
Deeper Understanding of SRP
• A class should have only one reason to 

change.
• Example: Logger and OrderProcessor 

responsibilities remain separate.



Applying OCP

• Design for extension without modifying 
existing code.

• Example: Add new shapes to a drawing app 
without altering existing code.



LSP in Practice

• Derived classes substitute their parents 
without altering behavior.

• Example: Vehicles like Cars and Bicycles share 
the same interface.



ISP: Simplifying Interfaces

• Break large interfaces into smaller, more 
specific ones.

• Example: Separate Printable and Scannable 
functionalities for devices.



DIP: Flexible Dependencies

• Depend on abstractions rather than 
concretions.

• Example: PaymentService relies on a 
PaymentProcessor interface.



What are Anti-Patterns?

• Recurring solutions that often cause more 
problems than they solve.

• Example: God Object, Spaghetti Code.
https://bariscimen.medium.com/10-most-
common-anti-patterns-every-software-
engineer-must-avoid-182091438c2b

https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b


The God Object Problem

• A class that knows too much or does too 
much.

• Solution: Refactor into smaller, focused 
classes.



Spaghetti Code

• Unstructured and difficult-to-read code.
• Solution: Modularize and use clear control 

flows.



Benefits of Modularization

• Improves readability, testing, and 
maintainability.

• Example: Splitting billing, inventory, and user 
management into modules.



Cohesion in Design
• Cohesion measures how related the 

functionalities of a module are.
• High cohesion ensures modules do one thing 

well.



What is Refactoring?

• Improving the structure of code without 
changing its behavior.

• Stat: 70% of developers refactor to reduce 
bugs (Fowler, 2018).



Examples of Refactoring

• Rename variables for clarity.
• Extract methods to remove duplication.

• Example, we have one calculate area function. 
We define a class for each type of shape 
(rectangle, circle) and embed logic therein.

• Easier to maintain, don’t have to remember 
logic of ‘how to for…’



Reducing Redundancy in Code

• Use functions and templates for repetitive 
tasks.

• Example: Parameterize queries in database 
code.



Reducing Redundancy in Code

user_id = 123 

query = f"SELECT * FROM users WHERE id = {user_id};" 

• Not great. Let’s improve.

username = "johndoe" 

email = "johndoe@example.com" 

query = "SELECT * FROM users WHERE username = ? AND 
email = ?;" 



DRY Across Teams

• Standardize tools and practices to avoid 
redundancy.

• Example: Shared libraries for common utilities.


	Deeper Understanding of SRP
	Applying OCP
	LSP in Practice
	ISP: Simplifying Interfaces
	DIP: Flexible Dependencies
	What are Anti-Patterns?
	The God Object Problem
	Spaghetti Code
	Benefits of Modularization
	Cohesion in Design
	What is Refactoring?
	Examples of Refactoring
	Reducing Redundancy in Code
	Reducing Redundancy in Code
	DRY Across Teams

