Deeper Understanding of SRP

* A class should have only one reason to
change.

 Example: Logger and OrderProcessor
responsibilities remain separate.

Single Responsibility Principle

Just because you can doesn't mean you should.

Applying OCP

* Design for extension without modifying
existing code.

 Example: Add new shapes to a drawing app
without altering existing code.

< <Zinterface ==
Character

p +rmovel)
+attack)
+defend))

by g
-
' ~
v ~
g -

LSP in Practice

Derived classes substitute their parents
without altering behavior.

Example: Vehicles like Cars and Bicycles share
the same interface.

[Class)

Vehicle Boase Class

+startEngi ne,() can't be
substituted
with Child
Class

Implements Implements ><
)

Class Class

CAR bic cle
+startEngi ne,() +star‘c()

ISP: Simplifying Interfaces

* Break large interfaces into smaller, more
specific ones.

 Example: Separate Printable and Scannable
functionalities for devices.

PrintScanContent

PrintTasks
printContent()

printContent()
scanContent()

scanContent()

faxContent() photoCopyContent()

photoCopyContent()

PrintDuplexContent()
FaxContent DuplexContent
printDuplexContent()
Fat Interface, doing
too many things

X v/

DIP: Flexible Dependencies

* Depend on abstractions rather than
concretions.

 Example: PaymentService relies on a
PaymentProcessor interface.

Rigid Elexible
| <[<<interface>>
A A >
i JAN
|
A"
B B \

What are Anti-Patterns?

* Recurring solutions that often cause more
problems than they solve.

 Example: God Object, Spaghetti Code.

https://bariscimen.medium.com/10-most-

commonhn-anti-patterns-every-software-
engineer-must-avoid-182091438c2b

https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b
https://bariscimen.medium.com/10-most-common-anti-patterns-every-software-engineer-must-avoid-182091438c2b

The God Object Problem

e A class that knows too much or does too
much.

e Solution: Refactor into smaller, focused
classes.

Spaghetti Code

e Unstructured and difficult-to-read code.
e Solution: Modularize and use clear control

flows.

GIANT
LOOFP
foriin [1,2,3]: FUNCTION
def printMa(): <— INSIDE LOOP
rint ("Ma’

SPAGHHC—TI X =pTrue(-) SPRINKLED
|f X == True: VARIABLE
printMa() /

— Yy = False
SINGLE y
LARGE C,-- if y == True: %
BLOCK printMa() *”%Pﬁrrrmu
COMMENTS ? else:
print("Ma")
\\\y = True

u:& and y==True: «—— NESTE
== 3 € IF’

print('‘Mia let me GO !')

else:
mrEirnd ("RAiAat

Benefits of Modularization

* Improves readability, testing, and
maintainability.

 Example: Splitting billing, inventory, and user
management into modules.

Cohesion in Design

e Cohesion measures how related the
functionalities of a module are.

* High cohesion ensures modules do one thlng
well. - ” -

b) Bad (high coupling, low cohesion)

What is Refactoring?

* Improving the structure of code without
changing its behavior.

e Stat: 70% of developers refactor to reduce
bugs (Fowler, 2018).

Examples of Refactoring

Rename variables for clarity.
Extract methods to remove duplication.

Example, we have one calculate area function.
We define a class for each type of shape
(rectangle, circle) and embed logic therein.

Easier to maintain, don’t have to remember
logic of ‘how to for...’

Reducing Redundancy in Code

* Use functions and templates for repetitive
tasks.

 Example: Parameterize queries in database
code.

Reducing Redundancy in Code

user _id =123

query = f"SELECT * FROM users WHERE id = {user_id};"

Not great. Let’s improve.

username = "johndoe"
email = "johndoe@example.com"”

query = "SELECT * FROM users WHERE username = ? AND
email = ?;"

DRY Across Teams

e Standardize tools and practices to avoid
redundancy.

 Example: Shared libraries for common utilities.

[) 1
TR e
-

import pandas as pd
Lmport numpy as np

df = pd.read_csv('titanic.csv')

	Deeper Understanding of SRP
	Applying OCP
	LSP in Practice
	ISP: Simplifying Interfaces
	DIP: Flexible Dependencies
	What are Anti-Patterns?
	The God Object Problem
	Spaghetti Code
	Benefits of Modularization
	Cohesion in Design
	What is Refactoring?
	Examples of Refactoring
	Reducing Redundancy in Code
	Reducing Redundancy in Code
	DRY Across Teams

