Software Design and
Development

Comprehensive Revision Lecture: Key
Concepts and Practical Applications



Introduction to Software Design

e Software design ensures maintainability and
scalability.

e Key goals: simplicity, clarity, and adaptability
(McGrath et al., 2013).



Importance of Design Principles

* Guides development to reduce technical debt
(Beck, 2003).

* Ensures robustness and quality in software.



Single Responsibility Principle (SRP)

* Each class or module has one responsibility.

* Analogy: A chef doesn’t also clean the dining
area.



Open-Closed Principle (OCP)

* Modules should be extendable without
modification.

* Analogy: Adding a new feature to a phone
without altering its existing hardware.




Liskov Substitution Principle (LSP)

* Derived classes should work as substitutes for
base classes.

* Analogy: Electric cars can replace fuel carsin a
garage.



Interface Segregation Principle
(ISP)

* Avoid forcing classes to implement unused
interfaces.

* Analogy: A universal remote doesn’t need all
buttons for every device.



Dependency Inversion Principle
(DIP)

* High-level modules depend on abstractions,
not details.

* Analogy: Using an adapter to plug devices into
different outlets.



Don’t Repeat Yourself (DRY)

* Avoid redundancy to improve maintainability.

e Stat: 60% of bugs stem from repetitive code
(Larman, 2004).



Applying DRY in Projects

* Centralize logic in functions or modules.

* Use templates for repeated structures.



Modularization

* Break systems into independent, cohesive
modules.

 Example: Separate billing, inventory, and user
management.



Encapsulation

e Restrict access to internal module details.
 Example: Using private methods in classes.



Abstraction

* Simplify complex details behind simple
interfaces.

 Example: A "print() function abstracts printer
drivers.



Version Control

e Git tracks changes and enables collaboration.

e Stat: 99% of developers use version control
(Chacon & Straub, 2014).



Unit Testing

e Test individual components in isolation.

e Stat: Teams with automated tests deploy 40%
faster (Beck, 2003).



Continuous Integration (Cl)

* Automate testing with each code change.
e Stat: Cl reduces deployment errors by 30%.



Secure Software Design

* [ncorporate security at every development
stage.

e Stat: 70% of breaches result from poor design
(OWASP, 2023).



Emerging Trends

* Al in bug detection and prevention.
e Stat: Al reduces time-to-detection by 50%.



Recap of Key Principles

e SOLID: Core design principles for maintainable
code.

* DRY: Avoid redundancy for clarity and
efficiency.



Q&A

* Open floor for questions.
* Discuss real-world applications of principles.



	Software Design and Development
	Introduction to Software Design
	Importance of Design Principles
	Single Responsibility Principle (SRP)
	Open-Closed Principle (OCP)
	Liskov Substitution Principle (LSP)
	Interface Segregation Principle (ISP)
	Dependency Inversion Principle (DIP)
	Don’t Repeat Yourself (DRY)
	Applying DRY in Projects
	Modularization
	Encapsulation
	Abstraction
	Version Control
	Unit Testing
	Continuous Integration (CI)
	Secure Software Design
	Emerging Trends
	Recap of Key Principles
	Q&A

