Introduction to Robust and Secure
Programming

* Robust and secure programming is the
foundation of reliable software systems.

Introduction to Robust and Secure
Programming (Continued)

* Cybercrime damages are expected to reach
$10.5 trillion annually by 2025.

Software Development Best
Practices

* Adopting best practices ensures
maintainability and security in software.

Software Development Best
Practices (Continued)

* 'Code is like humor. When you have to explain
it, it’s bad.' — Cory House

Input Validation and Output
Encoding

e Sanitizing inputs prevents a majority of
injection attacks.

Input Validation and Output

Encoding
if (empty(S_POST["name"])) {
Serrors['name'] = "Name is required.";
} else {

Sname = filter_var(trim(S_POST["name"]),
FILTER _SANITIZE_STRING);

if (Ipreg_match("/Ma-zA-Z]*$/", Sname)) {

Serrors['name'] = "Only letters and white spaces
are allowed in the name.";

}

Input Validation and Output
Encoding

<?php

trim(string $string, string $characters = " '

<?7php

filter var(mixed $value, int $filter = FILTER VALIDATE EMAIL, ar

PHP has a bad reputation, but is actually very good at
solving this type of problem, using native tools.

A mix of built in methods (filter validate email according to
RFC 5321 and RFC 5322) that basically acts like regex +
some removal of whitespace (new strings, tabbing etc etc.)

Input Validation and Output
Encoding

declare(strict types=1);

function processInput(string $name, string $email, ?int $age = null): void {
if (Ifilter var($email, FILTER VALIDATE EMAIL)) A

L
throw new InvalidArgumentException("Invalid email format.");

if ($age '== null && ($age < 0 || %age > 120)) {
throw new InvalidArgumentException("Age must be between 0 and 120.");

Input Validation and Output
Encoding (Continued)

* OWASP ranks input validation issues among
the top security risks.

Input Validation and Output
Encodmg (Contmued)

htmlspecialchars(string $string, int $flags encoding = 'UTF-

= ENT QUOTES | ENT SUBSTITUTE, string

Character Conversion
& &
<
>

<

<?php

$input = '<script>alert("XSS Attack!")</script>';
$safe = htmlspecialchars($input, ENT QUOTES, 'UTF-8°

echo $safe;
Output: <scriptégt;alert(" XSS Attack!")< /scriptégt;

Secure Memory Management

* Memory safety errors account for 70% of all
vulnerabilities in critical systems.

Secure Memory Management
(Continued)

* Tools like Valgrind and AddressSanitizer can
identify memory-related issues.

File BSC WViw il Hf

#2 0x406903 in std::allocator traits<std::allocator

lg| allocate_test.cpp 23 = O
ocator<int>&, unsigned long) fopt/sde/packages/gcc-9.3.
| #include <new> lloc_traits.h:444
#include =stdlib.h> #3 0x485e51 in std:: Vector base<int, std::allocato
#include <iostream= gned long) /opt/sde/packages/gcc-9.3.8/include/c++/9.3.
}+ 0 #4 0x4050d0 in void std::vector<int, std::allocator
. int main() { Ze=int const*=(int const*, int const*, std::forward_ite
char=* p = (Charkjmallqc(sizgqf(chargj):_ E’SJ"QCE-Q.3-E'J'intlude.-f'c++.f91lﬂﬂ:its,ﬂ's‘tl_veﬂtﬂl‘.h:15?"3

10 free(p); #5 Ox404a00 in std::vector<int, std::allocator<int=
11 r_list<int=, std::allocator<int> const&) Jopt/sde/packar

12 char* p@ = new char; 9.3.0/bits/stl_wvector.h:626
:I delete(po); #6 $x4ﬁ4491 in main /home/jdoe/demo/asan/cppbook_co

; - . PP-cpp:

N i = #7 0x7f7d7599b1a2 in _ libc_start main (/1ib6d/libc
'

M char* p2 = (char*malloc({sizeof(char*)3; N SUMMARY : AddressSanitizer: heap-use-after-free /home/jdr

¥ delete[1(p2); SENnion/miscellany/buggy/app.cpp:12 in main
[C - C e - r = q-':

EI char* p3 = (char #*)malloc(sizeof(char*)); = bh;ﬂggggg??;??égungutgg g;ggg ggd;g-;u 08 66 8
. std- - cout<<"Done. \n"- Ox0cO47FFf7fcO; 00 00 00 00 00 00 00 00 00]
4} ' Ox0cO47FFF7fdd: 00 00 00 00 00 00 60 00 00]
L Bx0co47fff7fed: 00 OO0 DO OO 00 00 OO 00 DO ;]

= OxOco47FFf7ffO: 00 00 00 OO0 OO0 00 00 00 PO @]

=>Gx0co47fffe000: fa fa[fd]fd fa fa fa fa fa T

S S Beoe Yo o ox - o [LR CRCR RS
allocate-test [Memcheck] [memcheck] valgrind (8/6/13, 3:51 PM) Ox6c0477118030: fa fa fa fa fa fa fa fa fa fa Ti -
Ox0c047fffBEA0: fa fa fa fa fa fa fa fa fa fa fa fa f

B bdim e ot mel Erm sl F oAlalates Forlalatas [T IO 00T 01

Authentication and Authorization

* Authentication ensures only legitimate users
can access the system.

VERIFY
CODE

LOGIN
USER

KKKk KKk XK

Authentication and Authorization
(Continued)

e Multi-factor authentication blocks 99.9% of
account compromise attacks.

const speakeasy = require('speakeasy');
const grcode = require('qrcode');

// 1. Generate a secret and display the QR Code
const secret = speakeasy.generateSecret({ name: 'YourAppName' });
qrcode.toString(secret.otpauth url, { type: 'terminal' }, (err, qr) => {

console.log(qr); // Show QR code in the terminal for scanning
console.log('Secret key:', secret.base32); // Backup key for the user

})s

// 2. Verify user-provided token
const userToken = '123456'; // Replace with input from the user
const isValid = speakeasy.totp.verify({

secret: secret.base32,

encoding: 'base32',

token: userToken,

})s

Data Protection

* Encryption and hashing protect sensitive data
from unauthorized access.

Data Protection (Continued)

* AES encryption is used by over 70% of secure
applications worldwide.

AES

Imagine a super-secret blender!

* The Key: This is like your secret password, only way more
complicated. It's a long string of numbers that only you and
your friend know.

* Locking the Data: You put your milkshake recipe into the
blender. AES chops it up then uses your secret password to
whiz it all around, mixing and scrambling it until it looks like
crumbs.

* Unlocking the Data: Your friend has the same blender and the
same secret password. They put the crumbs in, type in the
password, and the blender magically turns the milkshake back
to fruit!

AES

* Why is it so secure?

* The configuration makes it an infeasible
scenario to bruteforce. You would have to try
all manner of combinations of berries, milk etc
to crack

the recipe!

Concurrency and Multithreading

* Securely managing threads avoids race
conditions and data corruption.

Concurrency and Multithreading
(Continued)

e Deadlocks and race conditions cost
organisations millions in downtime.

Concurrency and Multithreading
(Continued)
Deadlock

* Imagine two friends, each holding a different
toy the other wants. They both refuse to give
up their toy until they get the other's,
resulting in a standstill where neither can play.
They're stuck!

Concurrency and Multithreading
(Continued)

Race Condition

* Two siblings race to grab the last cookie from
the jar. Whoever reaches it first gets to eat it,
but it's unpredictable who will win. The
outcome of the "race" determines who gets
the cookie.

Deadlock

from threading import Lock, Thread

lockl Lock()
lock2 Lock()

def taskl():
lockl.acquire()
lock2.acquire() # This will block if task2 has lock2
... do something ...
lock2.release()
lockl.release()

def task2():
lock2.acquire()
lockl.acquire() # This will block if taskl has lockl
... do something ...
lockl.release()
lock2.release()

Start both tasks concurrently
Thread(target=taskl).start()
Thread(target=task2).start()

Race conditions

from threading import Thread
counter

def increment():
global counter
for 1in range(1000000):

| counter += 1

Start multiple threads incrementing the counter
Thread(target=increment).start()
Thread(target=increment).start()

The final value of counter will likely be less than 2000000
print(counter)

Secure Software Design Patterns

e Secure design principles proactively mitigate
vulnerabilities.

Secure Software Design Patterns
(Continued)

* 'Design is not just what it looks like and feels
like. Design is how it works.' — Steve Jobs

Secure Deployment and
Configuration

* A secure deployment ensures no sensitive
data leaks into production.

* The reading task for this week covers some
best practice to avoid cybersecurity issues.

Secure Deployment and
Configuration (Continued)

* Misconfigurations are a leading cause of cloud
breaches.

* Leaking secure keys, obscurities in the config
etc can all cause issues.

* This is why tools like Docker are becoming
more popular. Container-based systems take a
‘snapshot’ of a system and deploy it as is.

Vulnerability Assessment and
Mitigation

* Vulnerability assessments help identify weak
points in software.

Weapon Slot | Generates ammo Ammo generated
for by
1 Mostly 2, Mostly 2,

sometimes 3

sometimes 3

2 Mostly 1, Mostly 1,
sometimes 3 sometimes 3
3 Mostly 1, Mostly 1,

sometimes 2

sometimes 2

Weapon Generates Ammo
Slot ammo for generated k
1 Always 3 Only 3
2 [disabled]
3 Always 1 Only 1

Vulnerability Assessment and
Mitigation
* Vulnerability assessments help identify weak
points in software.

Glitch in action

https://www.youtube.com/watch?v=v9E5jYBKfJk&ab_channel=A1Getdismoney

Vulnerability Assessment and
Mitigation (Continued)

* 'Fixing a vulnerability in development costs 6
times less than in production.’

Compliance and Regulatory
Considerations

* Security standards ensure compliance and
trust in sensitive domains.

Compliance and Regulatory
Considerations (Continued)

 GDPR fines totaled $1.2 billion in 2022,
highlighting the cost of non-compliance.

Emerging Trends and Advanced
Topics

* Quantum computing challenges traditional
encryption methods.

https://www.youtube.com/watch?v=WPZ2LHc
N80I&ab channel=Goldsmiths%2CUniversityo
fLondon

https://www.youtube.com/watch?v=WPZ2LHcN80I&ab_channel=Goldsmiths%2CUniversityofLondon
https://www.youtube.com/watch?v=WPZ2LHcN80I&ab_channel=Goldsmiths%2CUniversityofLondon
https://www.youtube.com/watch?v=WPZ2LHcN80I&ab_channel=Goldsmiths%2CUniversityofLondon

Emerging Trends and Advanced
Topics (Continued)

* Al-powered threat detection systems reduce
time-to-detection by 50%.

SolarWinds Hack

 The SolarWinds hack exposed vulnerabilities

in the supply chain, impacting over 18,000
organizations.

* Lessons Learned: Importance of securing

supply chains and monitoring third-party
software.

https://www.techtarget.com/whatis/feature/S
olarWinds-hack-explained-Everything-you-
need-to-know

https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know

Equifax Data Breach

* The Equifax breach exposed sensitive
information of 147 million people.

* Lessons Learned: The importance of patch
management and encrypting sensitive data.

https://archive.epic.org/privacy/data-
breach/equifax/

https://archive.epic.org/privacy/data-breach/equifax/
https://archive.epic.org/privacy/data-breach/equifax/
https://archive.epic.org/privacy/data-breach/equifax/

Log4j Vulnerability

The Log4Shell vulnerability affected millions of
Java-based applications worldwide.

_Lessons Learned: Importance of monitoring
open-source dependencies and quick
patching.
https://www.ncsc.gov.uk/information/log4j-
vulnerability-what-everyone-needs-to-know

https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know
https://www.ncsc.gov.uk/information/log4j-vulnerability-what-everyone-needs-to-know

Capital One Cloud Misconfiguration

* A misconfigured firewall exposed sensitive
data of 100 million customers.

* Lessons Learned: Securing cloud
configurations and implementing least
privilege access.

https://cert.europa.eu/publications/threat-
intelligence/threat-memo-190802-1/pdf

https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf
https://cert.europa.eu/publications/threat-intelligence/threat-memo-190802-1/pdf

Uber Data Breach

* A data breach compromised the information
of 57 million riders and drivers.

* Lessons Learned: The importance of strong

authentication and transparency in incident
response.

https://www.upguard.com/blog/what-caused-
the-uber-data-breach

https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach
https://www.upguard.com/blog/what-caused-the-uber-data-breach

	Introduction to Robust and Secure Programming
	Introduction to Robust and Secure Programming (Continued)
	Software Development Best Practices
	Software Development Best Practices (Continued)
	Input Validation and Output Encoding
	Input Validation and Output Encoding
	Input Validation and Output Encoding
	Input Validation and Output Encoding
	Input Validation and Output Encoding (Continued)
	Input Validation and Output Encoding (Continued)
	Secure Memory Management
	Secure Memory Management (Continued)
	Authentication and Authorization
	Authentication and Authorization (Continued)
	Data Protection
	Data Protection (Continued)
	AES
	AES
	Concurrency and Multithreading
	Concurrency and Multithreading (Continued)
	Concurrency and Multithreading (Continued)
	Concurrency and Multithreading (Continued)
	Deadlock
	Race conditions
	Secure Software Design Patterns
	Secure Software Design Patterns (Continued)
	Secure Deployment and Configuration
	Secure Deployment and Configuration (Continued)
	Vulnerability Assessment and Mitigation
	Vulnerability Assessment and Mitigation
	Vulnerability Assessment and Mitigation (Continued)
	Compliance and Regulatory Considerations
	Compliance and Regulatory Considerations (Continued)
	Emerging Trends and Advanced Topics
	Emerging Trends and Advanced Topics (Continued)
	SolarWinds Hack
	Equifax Data Breach
	Log4j Vulnerability
	Capital One Cloud Misconfiguration
	Uber Data Breach

