
Practical Lab: Secure Memory Management for
Python and JavaScript
Quite a bit to get through today. We’ll look at some JS/Python examples of
bad practice and attempt to fix them. We’ll move on to some exam practice in
the second hour of the session before finishing up with a bit of reading around
the inner workings of JS and Python ie what goes on under the hood. I would
suggest running the Python examples in Jupyter notebook as they will freeze
(and possibly crash) your machine.

Activity 1: Simulating Memory Management Issues in
Python
Write a Python script that creates a memory leak using an infinite loop append-
ing data to a list. Run the script and observe the memory usage over time.

Example code to test
def create_leak():

l = []
while True:

l.append('leak')

create_leak()

Reflection:
How could you prevent such a memory leak in a real application? spoiler alert!
To avoid such leaks, ensure that resources are managed properly and avoid hold-
ing unnecessary references to large objects. Use the gc module to periodically
clean up unused objects if necessary.

1

Activity 2: Identifying Memory Leaks in
JavaScript
Write a JavaScript function that creates a memory leak by retaining references
to a large object.

let obj = {};
let array = [];
for (let i = 0; i < 1000000; i++) {
obj[i] = "leak";
}
array.push(obj);

Reflection:
What changes would you make to this code to prevent memory leaks?
spoiler alert! To prevent memory leaks, release references to unused objects:
javascript obj = null;

2

Activity 3: Practical Garbage Collection in
Python
Use the gc module to simulate garbage collection. Create objects, remove refer-
ences, and use gc.collect() to observe memory usage before and after.

import gc
Allocate a large object
data = [i for i in range(1000000)]
print(f"Before cleanup: {gc.get_count()}")
Remove reference
data = None
gc.collect()
print(f"After cleanup: {gc.get_count()}")

Reflection :
What did you observe about memory usage before and after garbage collection?
spoiler alert! Before garbage collection, memory usage will be higher due to
the large object. After calling gc.collect(), the unused object is cleared, and
memory usage decreases.

3

Activity 4: Memory-efficient Data Handling in
Python
Refactor the following script to use a generator instead of a list for memory
efficiency. Spoiler: the type of bracket you use changes the data type (implicit
in Python)

Inefficient memory usage
numbers = [i for i in range(1000000)]

Reflection:
What is the benefit of using a generator instead of a list? spoiler alert! Gen-
erators are memory-efficient because they yield one item at a time rather than
storing the entire list in memory. Refactored code: python numbers = (i for
i in range(1000000))

4

Activity 5: Buffer Overflow Simulation in Python
You generally can’t produce these in Python, but let’s look at a similar sort of
scenario. Simulate a memory error by nesting lists repeatedly.

def nested_lists():
lst = []
for _ in range(1000000):

lst = [lst]

nested_lists()

Reflection
This plays into both Python’s strength(s) and weaknesses. Let’s look at how.

Understanding Python Memory Usage and
Nested Structures
In Python, memory management is dynamic and handled by the Python inter-
preter. However, issues such as excessive memory consumption or even memory
errors can occur when designing inefficient or overly complex data structures.
One example of such inefficiency is the creation of deeply nested lists.

How Memory is Used in Nested Structures
When a list is nested within another list, each layer of nesting requires additional
memory: - The outer list holds a reference to the inner list. - The inner list
holds references to its own elements, which could include another nested list.
- As the nesting grows deeper, the memory required to store these references
increases exponentially.

Example Growth of Nested Structures:

• A single list, [], uses minimal memory.
• A nested list like [[]] adds one level of nesting, requiring additional mem-

ory for the reference to the inner list.
• With every subsequent level, the structure grows deeper: [[[]]],

[[[[]]]], and so on.

Each layer of this growth results in more memory usage because: - Python
dynamically allocates memory for lists. - References between nested lists prevent
memory from being reclaimed.

5

Why Memory Errors Occur
Python is designed to handle large data structures efficiently, but even it has
limits. Memory errors occur when: 1. The structure grows beyond the available
memory on the system. 2. Python’s garbage collector cannot free up memory
because the structure is still in use. 3. Recursion or iteration creates increasingly
large objects that exhaust memory.

Common Triggers of Memory Issues:

• Exponential Growth: Deeply nested structures grow exponentially, con-
suming memory at a faster rate than flat structures.

• Lingering References: If objects hold references to each other, the
garbage collector cannot reclaim their memory until those references are
explicitly removed.

• System Constraints: Python’s memory allocation is limited by the sys-
tem’s hardware, such as available RAM.

Impact of Inefficient Memory Use
Inefficient memory usage doesn’t just lead to program crashes—it also affects
performance: - Slower Execution: As memory becomes scarce, the operating
system may start swapping memory to disk, which is much slower than RAM. -
Resource Starvation: Other programs running on the same system may also
be affected by excessive memory consumption.

Preventing Memory Errors in Python
1. Monitor Memory Usage:

• Use tools like tracemalloc to track memory allocation during exe-
cution.

• Periodically print memory usage to understand how resources are
consumed.

2. Avoid Excessive Nesting:
• Flatten structures where possible, avoiding unnecessary levels of nest-

ing.
• Design algorithms that use simpler, more efficient data structures.

3. Use Generators for Large Datasets:
• Replace large in-memory lists with generators that produce items on

demand.
4. Limit Object Lifetimes:

• Explicitly delete objects that are no longer needed using the del
statement.

• Use context managers (e.g., with statements) to handle resources like
files and connections.

5. Understand and Manage Circular References:

6

• Avoid scenarios where two objects reference each other, preventing
garbage collection.

• Use Python’s weakref module to create references that do not pre-
vent garbage collection.

Conclusion
While Python’s dynamic memory management prevents many traditional errors,
inefficiencies in program design can still lead to excessive memory usage or
errors. By understanding how nested structures consume memory and adopting
best practices, developers can write efficient, scalable programs that avoid such
pitfalls. Just because Python lets you get away with it (and can handle lots of
inefficiency) doesn’t mean you should be lazy.

7

Activity 6: Tracking Memory in a JavaScript
Web Application
Use browser developer tools to profile the memory of a simple JavaScript pro-
gram. Write a program that continuously appends data to a list.

let data = [];
setInterval(() => {

data.push(new Array(1000).fill('leak'));
}, 100);

Task:

•

Open your browser’s developer tools and navigate to the memory tab.

•

Run the program and observe the memory usage over time.

•

Stop the program and release references to data by setting data = null.

spoiler alert! After setting data = null, memory usage should decrease as the
garbage collector clears the unused object.

Activity 7: File handling and Python
Let’s consider how we open and read a file to memory.

Bad Example
file = open("data.txt", "r")
lines = file.readlines()

Why do you think this is a bad example? How might you encapsulate it in some
logic? Consider how we open and close the file and see if you can fix it! spoiler
alert! You should be using with open and some logic that includes closing the
file once read. Have a go at fixing it.

8

Exam Practice
Question 1: Resource Management in Python (10 Marks)
You are tasked with designing a Python application that handles file operations
and large data processing. Discuss the importance of proper resource man-
agement in such applications and propose solutions to prevent memory leaks
and resource wastage. Support your answer with examples of best practices
in Python. Rubric: Criteria Marks Explanation of resource management im-
portance 3 Identification of potential issues (e.g., unclosed files, large unused
objects) 3 Description of best practices (e.g., with statements, garbage collec-
tion) 3 Use of relevant examples or code snippets 1

Question 2: Detecting and Preventing Memory Leaks in
JavaScript (10 Marks)
Memory leaks can occur in JavaScript applications due to incorrect reference
management. Describe a scenario where a memory leak might occur in a web
application. Explain how you would detect and resolve such issues using modern
JavaScript tools and techniques. Rubric: Criteria Marks Clear description of
a memory leak scenario 3 Explanation of tools for detection (e.g., browser dev
tools) 3 Discussion of techniques for resolving leaks (e.g., releasing references) 3
Clarity and structure of the response 1

Question 3: Generators vs Lists in Python (10 Marks)
Explain the difference between generators and lists in Python. Discuss a use
case where using a generator would be more appropriate than using a list, con-
sidering both memory efficiency and performance. Rubric: Criteria Marks Clear
explanation of differences between generators and lists 3 Identification of mem-
ory efficiency advantages of generators 3 Relevant use case where generators are
preferable (e.g., large datasets) 3 Use of examples or scenarios to support the
explanation 1

9

Additional Reading
“Memory Management in Python” by GeeksforGeeks: This article provides an
in-depth look at how Python handles memory allocation and garbage collection,
essential for writing efficient and secure code. GEEKSFORGEEKS {newline}
“Memory Management in JavaScript” by GeeksforGeeks: This resource explains
JavaScript’s memory management mechanisms, including the heap, stack, and
garbage collection processes, crucial for optimizing web applications. GEEKS-
FORGEEKS

10

	Practical Lab: Secure Memory Management for Python and JavaScript
	Activity 1: Simulating Memory Management Issues in Python
	Reflection:

	Activity 2: Identifying Memory Leaks in JavaScript
	Reflection:

	Activity 3: Practical Garbage Collection in Python
	Reflection :
	Activity 4: Memory-efficient Data Handling in Python
	Reflection:

	Activity 5: Buffer Overflow Simulation in Python
	Reflection

	Understanding Python Memory Usage and Nested Structures
	How Memory is Used in Nested Structures
	Example Growth of Nested Structures:

	Why Memory Errors Occur
	Common Triggers of Memory Issues:

	Impact of Inefficient Memory Use
	Preventing Memory Errors in Python
	Conclusion

	Activity 6: Tracking Memory in a JavaScript Web Application
	Activity 7: File handling and Python
	Exam Practice
	Question 1: Resource Management in Python (10 Marks)
	Question 2: Detecting and Preventing Memory Leaks in JavaScript (10 Marks)
	Question 3: Generators vs Lists in Python (10 Marks)

	Additional Reading

