Git Basics for Students

This guide will help you get started with Git, a powerful version control tool,
and GitHub, a popular platform for hosting Git repositories. By following these
steps, you’ll learn the essential Git commands needed to manage your code
effectively.

Table of Contents

Installing Git

Creating a GitHub Account
Initial Setup

Basic Git Commands

Initializing a Repository

Adding Files to the Staging Area
Committing Changes

Creating and Switching Branches
Merging Branches

10. Pulling and Pushing to GitHub
11. Working with GitHub

12. Extra Tips

13. Installing Git

P NSO

©

To use Git on your local machine, you first need to install it. Most machines
will have it preinstalled.

Windows: Download and install Git from https://git-scm.com/download /win.

macOS: Git is often pre-installed. Run git —version in Terminal to check. If it’s
not installed, run:

xcode-select —install

Linux: Use the package manager to install Git. For example:

sudo apt install git # Debian/Ubuntu sudo yum install git # CentOS/Fedora
Verify your installation by running:

git —version

Creating a GitHub Account

Go to https://github.com/. Sign up for a free account. After creating your
account, you can host repositories, collaborate with others, and showcase your
work.

Initial Setup

Step 1: Configure Git Profile
Before using Git, configure your Git profile:

git config —global user.name “Your Name” git config —global user.email
“your__email@example.com”

This information will be attached to your commits.

Step 2: Verify Your Installation
To confirm that Git is installed and configured correctly, use:

git —version git config —list

Basic Git Commands

Initializing a Repository To start tracking a project with Git, navigate to your
project’s root directory and initialize Git:

cd path/to/your/project git init

This creates a hidden .git folder in your project directory.
Creating a .gitignore File

A .gitignore file tells Git which files or directories to ignore. Create a .gitignore
file in the root of your project and add file patterns to ignore, e.g.,

node_modules/ *.log .DS_ Store

Adding Files to the Staging Area

The staging area is where you gather changes before committing. To add a file
to the staging area, use:

git add filename # add specific file
git add . # add all files in the directory

Committing Changes

Once your files are staged, commit them with a message:

git commit -m “Your descriptive message”

Checking Repository Status

To see which files are staged, unstaged, or untracked, use:

git status

Viewing Commit History
To view the history of commits:
git log

Press q to exit the log view.

Creating and Switching Branches

Branches allow you to work on features independently.

Create a new branch:

git branch branch_name

Switch to a branch:

git checkout branch_name

Create and switch to a new branch:

git checkout -b branch_ name

Merging Branches

To merge changes from another branch into the current branch:

Switch to the branch you want to merge into, typically
main:

git checkout main

Merge the other branch:

git merge branch_name

Link your local project to the GitHub repository:

git remote add origin https://github.com/username/repo_name.git

Push your code to GitHub:
git push -u origin main
For subsequent pushes, you can use:

git push

Pulling Changes from GitHub:

To get changes from the remote repository, use:

git pull origin main

Working with GitHub

Forking a Repository:

On GitHub, find the repository you want to contribute to. Click Fork to create
a copy under your account.

Cloning a Repository:
Copy the repository URL on GitHub.

Clone the repository to your local machine:

git clone https://github.com/username/repo_ name.git

Creating Pull Requests:

After making changes on your branch, push to GitHub. Go to your GitHub
repository and click New Pull Request. Add a title and description, then click
Create Pull Request. Extra Tips Undo Last Commit: git reset —soft HEAD~1

Remove File from Staging Area:

git reset filename

Delete a Branch:

git branch -d branch_ name

Additional Git Activities with Syntax

Some optional extras if you manage to finish everything. #+# Create and Work
with a New Branch This activity teaches students to create and switch branches,
make changes, and then switch back without merging.

Create a new branch called feature-update using the command git branch
feature-update. Switch to the feature-update branch with git checkout feature-
update. Create a new file in this branch called feature.txt using your text
editor, and add some content such as “This is a new feature.” Add and commit
this new file with the commands git add feature.txt and git commit -m “Add
feature.txt to feature-update branch”. Switch back to the main branch without
merging by using git checkout main.

Merge Branches and Resolve Conflicts

This activity teaches students how to handle merge conflicts and resolve them.

While on the main branch, open the feature.txt file and add a different line
of text, for example, “This line is from the main branch.” Add and commit
this change in the main branch with git add feature.txt and git commit -m
“Add conflicting line in feature.txt on main branch”. Switch back to the feature-
update branch with git checkout feature-update. Merge the main branch into
the feature-update branch using git merge main. Git should detect a conflict
in feature.txt. Open feature.txt in your text editor and manually resolve the
conflict by choosing which changes to keep, or by combining them. Save the file.
After resolving the conflict, add the resolved file with git add feature.txt and
complete the merge with git commit -m “Resolve conflict in feature.txt”. Push
the changes in feature-update to GitHub using git push origin feature-update.

Collaborate Using GitHub

This activity helps students practice collaborating on GitHub by forking and
cloning repositories.

Pair up with another student or use a secondary GitHub
account if working alone.

One student should create a new repository on GitHub, initialize it with a
README file, and invite their partner as a collaborator from the repository
settings. The second student should clone the repository to their local machine
with git clone . Once cloned, create a new branch called collaboration using
git checkout -b collaboration. Create a new file named collab.txt and add your
name and a fun fact. For example, “Name: Alex, Fun Fact: I love hiking.” Add
and commit this file with git add collab.txt and git commit -m “Add collab.txt
with name and fun fact”. Push the collaboration branch to GitHub with git
push origin collaboration. The original repository owner should pull down the
new branch using git pull origin collaboration, review collab.txt, and merge
collaboration into main using git checkout main and git merge collaboration.
Create and Use a .gitignore File This activity helps students learn how to
create and use a .gitignore file to prevent tracking unnecessary files.

In your project, create a directory named logs and inside it, add a file called
error.Jog. Add some example content to error.log such as “Error: Missing file.”
In the root of your project, create a .gitignore file using your text editor and
add the following lines: logs/ to ignore the entire logs directory. *.log to ignore
all .log files. Save and close .gitignore. Verify that error.log does not appear in
the staging area by running git status.

Fetch and Pull Changes from a Remote Repository

This activity reinforces fetching and pulling changes from a shared repository.

Work in pairs for this activity.

Student A should add a new file in the shared GitHub repository named
shared.txt with a message like “This is a shared file” Student A commits and
pushes the changes to GitHub using git add shared.txt, git commit -m “Add
shared.txt”, and git push origin main. Student B should fetch the new changes
by using git fetch origin main to see the new branch in the remote repository.
Student B should then pull down the changes with git pull origin main to
retrieve and view the shared.txt file.

Review and Revert Commits

This activity helps students learn how to review commit history and revert
changes.

Create a new file named experiment.txt and add content such as “Experimenting
with Git revert.” Add and commit this file using git add experiment.txt and git
commit -m “Initial experiment commit”. View the commit history with git log
to identify the commit ID of experiment.txt. To undo the last commit without
deleting the actual changes in the file, use git reset —soft HEAD~1. Check the
status with git status to confirm that the changes are still staged but the commit
is undone.

Now it’s time to start building a portfolio, with regular commits to show em-
ployers your work and your version control skillset!

	Git Basics for Students
	Table of Contents
	Creating a GitHub Account
	Initial Setup
	Step 1: Configure Git Profile
	Step 2: Verify Your Installation

	Basic Git Commands
	This creates a hidden .git folder in your project directory.
	Creating a .gitignore File
	Adding Files to the Staging Area

	Committing Changes
	Checking Repository Status
	Viewing Commit History
	Creating and Switching Branches
	Create a new branch:
	Switch to a branch:
	Create and switch to a new branch:
	Merging Branches
	Switch to the branch you want to merge into, typically main:
	Merge the other branch:
	Link your local project to the GitHub repository:
	Push your code to GitHub:
	Pulling Changes from GitHub:

	Working with GitHub
	Forking a Repository:
	Cloning a Repository:
	Creating Pull Requests:
	Remove File from Staging Area:
	Delete a Branch:

	Additional Git Activities with Syntax
	Merge Branches and Resolve Conflicts
	Collaborate Using GitHub
	Pair up with another student or use a secondary GitHub account if working alone.
	Fetch and Pull Changes from a Remote Repository
	Work in pairs for this activity.
	Review and Revert Commits

