Introduction to CI/CD



Why CI/CD?

 Manual builds and deployments are slow and
error-prone.

* CI/CD automates building, testing, and
deploying software.

* Ensures faster feedback and reliable releases.



Clvs CD

e Continuous Integration (Cl): Automatically
build & test every commit.

e Continuous Delivery (CD): Always have
deployable builds.

e Continuous Deployment: Automatically
release every passing build.



The CI/CD Pipeline

* Code - Build - Test - Deploy - Monitor.
* Each stage ensures quality and reliability.

e Common tools: GitHub Actions, Jenkins,
GitLab ClI.



Tools in the Ecosystem

Version Control: Git, GitHub, GitLab.

Cl/CD: Jenkins, GitHub Actions, GitLab CI,
CircleCl.

Containers: Docker.
Deployment: AWS, Azure, Netlify, Heroku.



Example: GitHub Actions Workflow
(JavaScript)

A minimal Cl pipeline for a Node.js project.
e Automatically runs on each push.

yaml
name: Cl Pipeline
on: [push]
jobs:
build-test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install dependencies
run: npm install
- name: Run tests
run: npm test



Example: GitHub Actions Workflow
(Python)

* Asimple pipeline for Python vyami
name: Python Cl

projects using pytest. on: [push]
jobs:
* Runs automatically on test:
runs-on: ubuntu-latest
* push or pull request. steps:

- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.10'
- name: Install dependencies
run: pip install -r requirements.t;
- name: Run tests
run: pytest



Example Flow

1. Developer pushes code to GitHub.

2. Pipeline triggers automatically.

3. Tests run and report feedback.

4. Fix and push - Re-run automatically.
5. Passing tests = ready to deploy.



Sample Test File (Python)

It checks out the repo (so it can see - name: Run tests
the test file). run: pytest

It sets up Python and installs

dependencies.

It executes pytest in the repo folder.

Pytest automatically discovers any

pyt-honl files named test_*.py or *_test.py.
zsllmsde—tisf'py It runs those tests and reports

ef add(a, b): success/failure.

returna+b

def test_add():
assert add(2, 3) ==

collected 1 item

simple_test.py . [100%]



Common Pitfalls

No tests - Cl gives no feedback.

S
F
S

ow pipelines discourage use.
aky tests cause confusion.

Kipping deployment verification.



Best Practices

Keep pipelines fast (<10 min).
Run tests and linting on every push.

Protect main branches with required Cl
checks.

Use environment variables for secrets.
Make build status visible to all developers.



	Introduction to CI/CD
	Why CI/CD?
	CI vs CD
	The CI/CD Pipeline
	Tools in the Ecosystem
	Example: GitHub Actions Workflow (JavaScript)
	Example: GitHub Actions Workflow (Python)
	Example Flow
	Sample Test File (Python)
	Common Pitfalls
	Best Practices

