
Introduction to CI/CD

Why CI/CD?

• Manual builds and deployments are slow and
error-prone.

• CI/CD automates building, testing, and
deploying software.

• Ensures faster feedback and reliable releases.

CI vs CD

• Continuous Integration (CI): Automatically
build & test every commit.

• Continuous Delivery (CD): Always have
deployable builds.

• Continuous Deployment: Automatically
release every passing build.

The CI/CD Pipeline

• Code → Build → Test → Deploy → Monitor.
• Each stage ensures quality and reliability.
• Common tools: GitHub Actions, Jenkins,

GitLab CI.

Tools in the Ecosystem

• Version Control: Git, GitHub, GitLab.
• CI/CD: Jenkins, GitHub Actions, GitLab CI,

CircleCI.
• Containers: Docker.
• Deployment: AWS, Azure, Netlify, Heroku.

Example: GitHub Actions Workflow
(JavaScript)

• A minimal CI pipeline for a Node.js project.
• Automatically runs on each push.

yaml
name: CI Pipeline
on: [push]
jobs:
 build-test:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4
 - name: Install dependencies
 run: npm install
 - name: Run tests
 run: npm test

Example: GitHub Actions Workflow
(Python)

• A simple pipeline for Python
projects using pytest.

• Runs automatically on
• push or pull request.

yaml
name: Python CI
on: [push]
jobs:
 test:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v4
 - name: Set up Python
 uses: actions/setup-python@v5
 with:
 python-version: '3.10'
 - name: Install dependencies
 run: pip install -r requirements.tx
 - name: Run tests
 run: pytest

Example Flow

• 1. Developer pushes code to GitHub.
• 2. Pipeline triggers automatically.
• 3. Tests run and report feedback.
• 4. Fix and push → Re-run automatically.
• 5. Passing tests = ready to deploy.

Sample Test File (Python)

python
simple_test.py
def add(a, b):
 return a + b

def test_add():
 assert add(2, 3) == 5

- name: Run tests
 run: pytest

================= test session starts =================
collected 1 item

simple_test.py . [100%]

================== 1 passed in 0 03s ===================

It checks out the repo (so it can see
the test file).
It sets up Python and installs
dependencies.
It executes pytest in the repo folder.
Pytest automatically discovers any
files named test_*.py or *_test.py.
It runs those tests and reports
success/failure.

Common Pitfalls

• No tests → CI gives no feedback.
• Slow pipelines discourage use.
• Flaky tests cause confusion.
• Skipping deployment verification.

Best Practices

• Keep pipelines fast (<10 min).
• Run tests and linting on every push.
• Protect main branches with required CI

checks.
• Use environment variables for secrets.
• Make build status visible to all developers.

	Introduction to CI/CD
	Why CI/CD?
	CI vs CD
	The CI/CD Pipeline
	Tools in the Ecosystem
	Example: GitHub Actions Workflow (JavaScript)
	Example: GitHub Actions Workflow (Python)
	Example Flow
	Sample Test File (Python)
	Common Pitfalls
	Best Practices

