What is Unit Testing?

e Unit testing focuses on verifying the
functionality of individual pieces (units) of
code in isolation.

Why Unit Testing is Important

* Ensures that code behaves as expected,
prevents bugs early in development, and
facilitates refactoring.

Best Practices for Unit Testing

e Keep tests small and focused, name tests
clearly, and isolate tests from external
dependencies.

Test-Driven Development (TDD)

* Write tests first, then write code to pass the
tests. Red-Green-Refactor cycle is often
followed.

Anatomy of a Unit Test

* Atypical unit test includes setup, execution,
assertion, and teardown.

Example: Simple Unit Test in
JavaScript

function add(a, b) {
| return a + b;

}

function test(message, assertion) {
if (assertion()) {
console.log("Pass:
} else {
console.error("Fail:

}
}

+ message);

+ message);

return add(1l, 2) === 3;

Edge Cases in Unit Testing

* Testing edge cases (e.g., null values, empty
inputs) ensures robustness.

L values', () => {

d(1l, null) === null && add(null, 2) === null && add(null, null) === null;

test('handles undefined values', () => {

return add(1l, undefined) === undefined && add(undefined, 2) === undefined && add(undefined, undefined) === undefined;

K

test('handles empty string', () => {
return add(1, "") === "1" & add("", 2)

Mocks and Stubs in Unit Testing

* Use mocks and stubs to simulate dependencies and
control the behavior of external systems.

* Stubs: Fake versions of things that give pre-determined
answers. They help isolate the code you're testing.

* Mocks: Fake versions of things that record how they
were used. They help verify that your code interacts with
other parts of the system correctly.

Example: Mocking

/ Function to test
function isAdult(age) {
return age >= 18;

}

/ Mock
const mockAge = 20;

// Test with mock
test('mock age is adult', () => {
return isAdult(mockAge);

function test(message, assertion) [
if (assertion()) {
| console.log("Pass: " + message);
| else
F ELac 1

| console.error("Fail: " + message);

Example: Stubs

// Function to test
function canDrive(age, licenseService) {
return licenseService.hasLicense(age) && age >= 16;

}

// Stub (Corrected)

const stubLicenseService = {
hasLicense: function(age) {
| return age >= 18; // Returns true if age is 18 or older

}
};

// Test with stub

test('stub license service allows driving at 18', () => {
const age = 18;
return canDrive(age, stublLicenseService);

1)

function test(message, assertion) @
if (assertion()) {
| console.log("Pass: " + message);
} else {
| console.error("Fail: " + message);

How to Write Good Assertions

* Ensure that your tests cover a range of inputs
and make clear, focused assertions.

Common Unit Testing Libraries
(JavaScript)

Popular tools include Jest, Mocha, Chai, and
Jasmine for writing and running unit tests in
JavaScript.

Example: Scenario

A teacher needs to update the grade of a student for a particular assignment. They
would log into the system, search for the student by name or ID, navigate to the
relevant course and assignment, and then enter the new grade. The system would
then update the student's record with the new grade.

function test(message, assertion) {
if (assertion()) {
| console.log("Pass: " + message);
} else {
| console.error("Fail: " + message);

test('calculates final grade for all marks above 70°',
const marks = [75, 80, 72];
const grade = calculateFinalGrade(marks); // calculateFinalGrade function doesn't exist yet
return grade === 'First Class';

Testing with Different Inputs

* Test cases should cover normal, boundary, and
exceptional inputs to ensure comprehensive

coverage.
Unit Tests
invalid valid invalid invalid
I 1011 99/100
3 \
| |
Partition 1 Partition 2 Partition 3 Partition 4
*
v v l v
-1 6 88 121

Refactoring and Unit Testing

* Unit tests enable safe refactoring. Code can be
improved without breaking existing
functionality.

WRITE A FAILING TEST

. WRITE THE MINIMUM
R Aoe - oon oy AND REFACTOR CODE TO MAKE THE TEST

Unit Testing in Continuous
Integration (Cl)

* Integrating unit tests in CI/CD pipelines
ensures that code is tested every time changes
are made.

CI/CD PIPELINE

.'/ b /L L
\-_- '- .' I\H_,-/II
Ru
te

Motify Deliver build DPI:-f
of test m whe

utcome environment ncccssary

	What is Unit Testing?
	Why Unit Testing is Important
	Best Practices for Unit Testing
	Test-Driven Development (TDD)
	Anatomy of a Unit Test
	Example: Simple Unit Test in JavaScript
	Edge Cases in Unit Testing
	Mocks and Stubs in Unit Testing
	Example: Mocking
	Example: Stubs
	How to Write Good Assertions
	Common Unit Testing Libraries (JavaScript)
	Example: Scenario
	Testing with Different Inputs
	Refactoring and Unit Testing
	Unit Testing in Continuous Integration (CI)

