
What is Unit Testing?

• Unit testing focuses on verifying the 
functionality of individual pieces (units) of 
code in isolation.



Why Unit Testing is Important

• Ensures that code behaves as expected, 
prevents bugs early in development, and 
facilitates refactoring.



Best Practices for Unit Testing

• Keep tests small and focused, name tests 
clearly, and isolate tests from external 
dependencies.



Test-Driven Development (TDD)

• Write tests first, then write code to pass the 
tests. Red-Green-Refactor cycle is often 
followed.



Anatomy of a Unit Test

• A typical unit test includes setup, execution, 
assertion, and teardown.



Example: Simple Unit Test in 
JavaScript



Edge Cases in Unit Testing

• Testing edge cases (e.g., null values, empty 
inputs) ensures robustness.



Mocks and Stubs in Unit Testing

• Use mocks and stubs to simulate dependencies and 
control the behavior of external systems.

• Stubs: Fake versions of things that give pre-determined 
answers. They help isolate the code you're testing.

• Mocks: Fake versions of things that record how they 
were used. They help verify that your code interacts with 
other parts of the system correctly.



Example: Mocking



Example: Stubs



How to Write Good Assertions

• Ensure that your tests cover a range of inputs 
and make clear, focused assertions.



Common Unit Testing Libraries 
(JavaScript)

• Popular tools include Jest, Mocha, Chai, and 
Jasmine for writing and running unit tests in 
JavaScript.



Example: Scenario
A teacher needs to update the grade of a student for a particular assignment. They 
would log into the system, search for the student by name or ID, navigate to the 
relevant course and assignment, and then enter the new grade. The system would 
then update the student's record with the new grade.



Testing with Different Inputs

• Test cases should cover normal, boundary, and 
exceptional inputs to ensure comprehensive 
coverage.



Refactoring and Unit Testing

• Unit tests enable safe refactoring. Code can be 
improved without breaking existing 
functionality.



Unit Testing in Continuous 
Integration (CI)

• Integrating unit tests in CI/CD pipelines 
ensures that code is tested every time changes 
are made.


	What is Unit Testing?
	Why Unit Testing is Important
	Best Practices for Unit Testing
	Test-Driven Development (TDD)
	Anatomy of a Unit Test
	Example: Simple Unit Test in JavaScript
	Edge Cases in Unit Testing
	Mocks and Stubs in Unit Testing
	Example: Mocking
	Example: Stubs
	How to Write Good Assertions
	Common Unit Testing Libraries (JavaScript)
	Example: Scenario
	Testing with Different Inputs
	Refactoring and Unit Testing
	Unit Testing in Continuous Integration (CI)

