
Module Coupling and Cohesion
in Software Design

A Guide to Building Better Software

Understanding Coupling

• The degree of interdependence between
modules.

Content Coupling (Worst)

• Description: One module directly modifies
data or instructions within another module.

• Desirability: Avoid

Common Coupling

• Description: Modules share global data.
• Desirability: Minimize

Imagine a team working on a big project, like building a
website. They have a shared document with everyone's
login passwords for different tools and systems.

Control Coupling

• Description: One module passes flags or
parameters to control the flow of another.

• Desirability: Use with caution

Module A sends specific instructions to Module B, like:

• "Save this data now."

• "Display this message in a red box."

• Essentially we want to give Module B its own autonomy to make
decisions.

Stamp Coupling

• Description: Modules share a composite data
structure and use only parts of it.

• Desirability: Use with caution
Imagine a system with two modules:

Module A: Collects user information (name, address, age, purchase
history, etc.) and stores it in a "User" object.

Module A sends the entire "User" object to Module B, even though
Module B only needs the "purchase history" field. Now Module B has
access to unnecessary information like the user's age and address.

Data Coupling (Best)

• Description: Modules communicate only
through parameters, passing only necessary
data.

• Desirability: Strive for this
When the Dovahkin successfully hits the dragon, the "Sword Swing"
module sends the damage value (data) to the "Dragon Health"
module. The "Dragon Health" module then subtracts that damage
from the dragon's total health.

Understanding Cohesion

• The degree to which elements within a
module belong together.

You create a module called "CircleDrawer". This module has everything
needed to draw circles:

• Draw function: Takes in the circle's size and position and draws it on
the screen.

• Color options: Lets the user pick the color of the circle.

• Fill function: Decides if the circle should be filled with color or just an
outline.

Coincidental (Worst)

• Description: Elements within a module have
no clear relationship.

• Desirability: Avoid

A toolbox containing: a hammer, a toothbrush,
a spoon, a lightbulb, and a single sock.

Logical

• Description: Elements perform similar
activities but are grouped arbitrarily.

• Desirability: Improve

Think of a "utility" module in software. It might contain functions for:

String manipulation (e.g., trimming whitespace, converting to
uppercase)

Date and time formatting

Basic mathematical operations

Temporal

• Description: Elements are grouped by when
they are processed.

• Desirability: Improve
Think of it like your morning routine:

You might have a set of actions you perform every morning: brushing
your teeth, taking a shower, getting dressed, eating breakfast. These
actions are temporally related because you do them in sequence at the
start of your day, but they don't necessarily have a strong functional
relationship.

Procedural

• Description: Elements are grouped by their
order of execution.

• Desirability: Improve
Think of it like following a recipe:

A recipe outlines a series of steps to prepare a dish: chopping
vegetables, boiling water, mixing ingredients, and so on. These steps
are procedurally related, but they might involve different tools and
techniques.

Communicational

• Description: Elements operate on the same
data.

• Desirability: Good

You have carpenters, electricians, plumbers, and painters all working
on the same house. They have different skills and tasks, but they all
contribute to the shared goal of completing the house. The “data
structure” in this case is the house.

Functional (Best)

• Description: All elements contribute to a
single, well-defined task.

• Desirability: Strive for this
Each musician plays a specific instrument, and they all follow the
conductor to create a harmonious musical piece. Every instrument and
musician contributes to the single purpose of performing the music.

Why it Matters

• - Increased maintainability
• - Improved reusability
• - Enhanced testability
• - Reduced complexity

Modularization

• Description: Breaking down a system into
smaller, independent modules.
Example: Separate modules for calculations and display
calculations.py
def add(x, y):

return x + y

display.py
import calculations
result = calculations.add(5, 3)
print(f'The result is: {result}')

Abstraction

Hiding complex implementation details behind
simple interfaces.
Example: Using a function to hide the details of file reading
def get_file_contents(filename):

Code to open and read the file (hidden from the user)
with open(filename, 'r') as f:

contents = f.read()
return contents

contents = get_file_contents('my_file.txt')
print(contents)

Encapsulation
Bundling data and methods that operate on
that data within a class.
Example: A Dog class with name and bark() method
class Dog:

def __init__(self, name):
self.name = name

def bark(self):
return 'Woof!'

my_dog = Dog('Buddy')
print(my_dog.name) # Output: Buddy
print(my_dog.bark()) # Output: Woof!

Information Hiding

Restrict access to internal details.
Example: Using a private variable within a class
class BankAccount:

def __init__(self, initial_balance):
self.__balance = initial_balance # Private variable

def deposit(self, amount):
self.__balance += amount

def get_balance(self):
return self.__balance

Interface Design

• Clear and consistent ways to interact.
Example: A simple function with clear parameters
def calculate_area(length, width):

'''Calculates the area of a rectangle.'''
return length * width

area = calculate_area(5, 10) # Clear usage of the function

Design Patterns
proven solutions to common problems.
Example: Using the Factory pattern to create different shapes
class Shape:

def draw(self):
pass

class Circle(Shape):
def draw(self):

print('Drawing a circle')
...
def shape_factory(shape_type):
if shape_type == 'circle':

return Circle()
elif shape_type == 'square':

return Square()
circle = shape_factory('circle')
circle.draw() # Output: Drawing a circle

	Module Coupling and Cohesion in Software Design
	Understanding Coupling
	Content Coupling (Worst)
	Common Coupling
	Control Coupling
	Stamp Coupling
	Data Coupling (Best)
	Understanding Cohesion
	Coincidental (Worst)
	Logical
	Temporal
	Procedural
	Communicational
	Functional (Best)
	Why it Matters
	Modularization
	Abstraction
	Encapsulation
	Information Hiding
	Interface Design
	Design Patterns

