
Week 1 Lab Activities: Introduction to DRY, SOLID, Coupling, and Cohesion

Objective:
By the end of this lab, students will be able to:

• Understand the DRY principle and how to avoid code repetition.
• Implement the SOLID principles in both JavaScript and Python.
• Analyze and reduce coupling between components.
• Increase cohesion within modules and functions.

Lab Activities Overview
1. Activity 1: DRY Principle

• Language: JavaScript
• Time: 30 minutes
• Goal: Demonstrate how to refactor code to remove repetition.

2. Activity 2: Implementing SOLID Principles

• Language: Python
• Time: 45 minutes
• Goal: Implement key SOLID principles (Single Responsibility Principle and

Open/Closed Principle) in Python code.
3. Activity 3: Understanding Coupling and Cohesion

• Language: JavaScript
• Time: 30 minutes
• Goal: Refactor code to reduce coupling and increase cohesion.

4. Conclusion: A brief 15-minute Q&A and reflection session on what students learned.

Activity 1: DRY Principle in JavaScript
Overview:
Students will start by identifying repeated code in a JavaScript snippet and refactor it to make the
code adhere to the DRY principle.

Steps:
1. Provide students with the following JavaScript code that has repetitions:

js
Copy code
function getAreaOfSquare(side) {
 return side * side;
}

function getAreaOfCircle(radius) {
 return 3.1416 * radius * radius;
}

function getAreaOfTriangle(base, height) {
 return 0.5 * base * height;
}

function getAreaOfRectangle(length, width) {
 return length * width;
}

2. Task: Refactor this code to remove repetition by using a single function that takes a shape
and its dimensions as input and returns the area.

Example output might look something like this:

js
Copy code
function getArea(shape, dimensions) {
 switch (shape) {
 case 'square':
 return dimensions.side * dimensions.side;
 case 'circle':
 return 3.1416 * dimensions.radius * dimensions.radius;
 case 'triangle':
 return 0.5 * dimensions.base * dimensions.height;
 case 'rectangle':
 return dimensions.length * dimensions.width;
 default:
 return null;
 }
}

3. Discussion: After completing the refactoring, students should explain why the new version
is more maintainable and adheres to the DRY principle.

Activity 2: Implementing SOLID Principles in Python
Overview:
This activity will focus on implementing the Single Responsibility Principle (SRP) and
Open/Closed Principle (OCP) in Python.

Steps:
1. Provide students with the following poorly designed Python code:

python
Copy code
class Report:
 def __init__(self, data):
 self.data = data

 def print_report(self):
 print("Report:")
 for item in self.data:
 print(f"Item: {item}")

 def save_to_file(self, filename):
 with open(filename, 'w') as file:
 for item in self.data:
 file.write(f"Item: {item}\n")

2. Task (SRP): Refactor the class Report to follow the Single Responsibility Principle, by
separating the reporting logic from the saving logic.

Expected Output:

python
Copy code
class Report:
 def __init__(self, data):
 self.data = data

 def print_report(self):
 print("Report:")
 for item in self.data:
 print(f"Item: {item}")

class ReportSaver:
 @staticmethod
 def save_to_file(report, filename):
 with open(filename, 'w') as file:
 for item in report.data:
 file.write(f"Item: {item}\n")

3. Task (OCP): Modify the Report class to make it open for extension, but closed for
modification. Introduce a new feature that allows reports to be saved in multiple formats
(e.g., JSON, plain text) without modifying the original save_to_file method directly.

Expected Output:

python
Copy code
import json

class Report:
 def __init__(self, data):
 self.data = data

 def print_report(self):
 print("Report:")
 for item in self.data:
 print(f"Item: {item}")

class ReportSaver:
 def save(self, report, filename, format_type="text"):
 if format_type == "text":
 self.save_as_text(report, filename)
 elif format_type == "json":
 self.save_as_json(report, filename)

 def save_as_text(self, report, filename):
 with open(filename, 'w') as file:
 for item in report.data:
 file.write(f"Item: {item}\n")

 def save_as_json(self, report, filename):
 with open(filename, 'w') as file:
 json.dump({"report": report.data}, file)

4. Discussion: After refactoring, students should explain how this design adheres to the
Open/Closed Principle and is more flexible for future extensions.

Activity 3: Understanding Coupling and Cohesion in JavaScript
Overview:
Students will review a code sample that exhibits high coupling and low cohesion and will refactor it
to reduce coupling and improve cohesion.

Steps:
1. Provide students with the following tightly coupled JavaScript code:

js
Copy code
function displayUserProfile(user) {
 console.log(`Name: ${user.name}`);
 console.log(`Email: ${user.email}`);
 if (user.subscription === 'premium') {
 console.log('Premium user');
 } else {
 console.log('Standard user');
 }
}

function sendUserNotification(user) {
 if (user.subscription === 'premium') {
 console.log('Sending premium notification to', user.email);
 } else {
 console.log('Sending standard notification to', user.email);
 }
}

2. Task: Refactor this code to reduce coupling between the displayUserProfile and
sendUserNotification functions by removing the subscription check from both places and
moving it into its own function.

Expected Output:

js
Copy code
function displayUserProfile(user) {
 console.log(`Name: ${user.name}`);
 console.log(`Email: ${user.email}`);
 displayUserSubscription(user);
}

function sendUserNotification(user) {
 console.log(`Sending ${user.subscription} notification to`, user.email);
}

function displayUserSubscription(user) {
 if (user.subscription === 'premium') {
 console.log('Premium user');
 } else {
 console.log('Standard user');
 }
}

3. Discussion: Students should analyze why the new design improves modularity, reduces
coupling, and increases cohesion between related functionalities.

Conclusion (15 minutes):
• Reflection & Q&A: Ask students to reflect on:

• How their refactored code adheres to DRY, SOLID, coupling, and cohesion
principles.

• Real-world scenarios where these principles would be particularly important.

	Week 1 Lab Activities: Introduction to DRY, SOLID, Coupling, and Cohesion
	Objective:

	Lab Activities Overview
	Activity 1: DRY Principle in JavaScript
	Overview:
	Steps:

	Activity 2: Implementing SOLID Principles in Python
	Overview:
	Steps:

	Activity 3: Understanding Coupling and Cohesion in JavaScript
	Overview:
	Steps:

	Conclusion (15 minutes):

