Week 1 Lab Activities: Introduction to DRY, SOLID, Coupling, and Cohesion

Objective:
By the end of this lab, students will be able to:

« Understand the DRY principle and how to avoid code repetition.
« Implement the SOLID principles in both JavaScript and Python.
» Analyze and reduce coupling between components.

« Increase cohesion within modules and functions.

Lab Activities Overview
1. Activity 1: DRY Principle

» Language: JavaScript
« Time: 30 minutes

« Goal: Demonstrate how to refactor code to remove repetition.
2. Activity 2: Implementing SOLID Principles

« Language: Python
« Time: 45 minutes

» Goal: Implement key SOLID principles (Single Responsibility Principle and
Open/Closed Principle) in Python code.
3. Activity 3: Understanding Coupling and Cohesion

« Language: JavaScript
« Time: 30 minutes

» Goal: Refactor code to reduce coupling and increase cohesion.
4. Conclusion: A brief 15-minute Q&A and reflection session on what students learned.



Activity 1: DRY Principle in JavaScript
Overview:

Students will start by identifying repeated code in a JavaScript snippet and refactor it to make the
code adhere to the DRY principle.

Steps:
1. Provide students with the following JavaScript code that has repetitions:

js

Copy code

function getAreaOfSquare(side) {
return side * side;

}

function getAreaOfCircle(radius) {
return 3.1416 * radius * radius;

}

function getAreaOfTriangle(base, height) {
return 0.5 * base * height;
}

function getAreaOfRectangle(length, width) {
return length * width;

}

2. Task: Refactor this code to remove repetition by using a single function that takes a shape
and its dimensions as input and returns the area.

Example output might look something like this:

js
Copy code
function getArea(shape, dimensions) {
switch (shape) {
case 'square':
return dimensions.side * dimensions.side;
case 'circle":
return 3.1416 * dimensions.radius * dimensions.radius;
case 'triangle':
return 0.5 * dimensions.base * dimensions.height;
case 'rectangle":
return dimensions.length * dimensions.width;
default:
return null;

3. Discussion: After completing the refactoring, students should explain why the new version
is more maintainable and adheres to the DRY principle.



Activity 2: Implementing SOLID Principles in Python
Overview:

This activity will focus on implementing the Single Responsibility Principle (SRP) and
Open/Closed Principle (OCP) in Python.

Steps:
1. Provide students with the following poorly designed Python code:

python
Copy code
class Report:
def __init__(self, data):
self.data = data

def print_report(self):
print("Report:")
for item in self.data:
print(f"ltem: {item}")

def save_to_file(self, filename):
with open(filename, 'w') as file:
for item in self.data:
file.write(f"Item: {itemH\n")

2. Task (SRP): Refactor the class Report to follow the Single Responsibility Principle, by
separating the reporting logic from the saving logic.

Expected Output:

python
Copy code
class Report:
def __init__(self, data):
self.data = data

def print_report(self):
print("Report:")
for item in self.data:
print(f"ltem: {item}")

class ReportSaver:
@staticmethod
def save_to_file(report, filename):
with open(filename, 'w') as file:
for item in report.data:
file.write(f"Item: {item}\n")

3. Task (OCP): Modify the Report class to make it open for extension, but closed for
modification. Introduce a new feature that allows reports to be saved in multiple formats
(e.g., JSON, plain text) without modifying the original save_to_file method directly.

Expected Output:

python
Copy code
import json



class Report:
def __init__(self, data):
self.data = data

def print_report(self):
print("Report:")
for item in self.data:
print(f"ltem: {item}")

class ReportSaver:
def save(self, report, filename, format_type="text"):
if format_type == "text":
self.save_as_text(report, filename)
elif format_type == "json":
self.save_as_json(report, filename)

def save_as_text(self, report, filename):
with open(filename, 'w') as file:
for item in report.data:
file.write(f"Item: {item}\n")

def save_as_json(self, report, filename):
with open(filename, 'w') as file:
json.dump({"report": report.data}, file)

4. Discussion: After refactoring, students should explain how this design adheres to the
Open/Closed Principle and is more flexible for future extensions.



Activity 3: Understanding Coupling and Cohesion in JavaScript
Overview:

Students will review a code sample that exhibits high coupling and low cohesion and will refactor it
to reduce coupling and improve cohesion.

Steps:
1. Provide students with the following tightly coupled JavaScript code:

js
Copy code
function displayUserProfile(user) {
console.log('Name: S{user.name}’);
console.log(‘Email: S{user.email}’);
if (user.subscription === "premium’) {
console.log('Premium user');
}else {
console.log('Standard user');
}
}

function sendUserNotification(user) {
if (user.subscription === 'premium’) {
console.log('Sending premium notification to', user.email);
}else {
console.log('Sending standard notification to', user.email);
}
}

2. Task: Refactor this code to reduce coupling between the displayUserProfile and
sendUserNotification functions by removing the subscription check from both places and
moving it into its own function.

Expected Output:

js

Copy code

function displayUserProfile(user) {
console.log('Name: S{user.name}’);
console.log('Email: S{user.email}’);
displayUserSubscription(user);

}

function sendUserNotification(user) {
console.log('Sending S{user.subscription} notification to", user.email);

}

function displayUserSubscription(user) {
if (user.subscription === "premium’) {
console.log('Premium user');
}else {
console.log('Standard user');
}
}

3. Discussion: Students should analyze why the new design improves modularity, reduces
coupling, and increases cohesion between related functionalities.



Conclusion (15 minutes):

» Reflection & Q&A: Ask students to reflect on:
« How their refactored code adheres to DRY, SOLID, coupling, and cohesion
principles.
 Real-world scenarios where these principles would be particularly important.



	Week 1 Lab Activities: Introduction to DRY, SOLID, Coupling, and Cohesion
	Objective:

	Lab Activities Overview
	Activity 1: DRY Principle in JavaScript
	Overview:
	Steps:

	Activity 2: Implementing SOLID Principles in Python
	Overview:
	Steps:

	Activity 3: Understanding Coupling and Cohesion in JavaScript
	Overview:
	Steps:

	Conclusion (15 minutes):

