Software Design

Dr Sean McGrath

Software Design

.Software design links requirements to coding and
debugging.

It’s crucial in both small and large projects.

.The design process helps manage complexity,
ensures structure, and balances trade-offs.

Inherent Challenges

-Wicked Problems: Design problems are often not
fully understood until partially solved (e.g.,
acoma Narrows Bridge example).

.Sloppy Process: Design involves trial and error,
leading to a tidy result through mistakes.

.Nondeterministic: Multiple valid solutions can
exist for a design problem.

Tradeoffs

.Designers must balance multiple objectives like
performance, simplicity, and extensibility.

.Different designs will suit different priorities based
on system requirements.

.Restricting possibilities helps simplify the design
and avoid overcomplication.

Emergent Practice

.Good design doesn’t happen instantly; it evolves.

.Reviews, discussions, and real-world testing help
shape the design.

Flexibility to adapt and improve is a key aspect of
emergent design.

Emergent Practice

.Managing complexity is the primary technical
Imperative.

.Essential complexity stems from real-world
Intricacies, while accidental complexity arises
from poor design.

.Breaking a problem into manageable parts helps
reduce complexity.

Design Heuristics

-Minimal Complexity: Simplicity should be
prioritized to reduce mental load.

.Ease of Maintenance: Design for the future,
thinking about how someone else will maintain

your code.

.Loose Coupling: Keep interdependencies
between components minimal.

Summary of a Typical Software
Application Architecture

.Presentation Layer: User interface.
.Business Logic Layer: Core application logic.
.Data Access Layer: Interacts with databases.

.Database Layer: Stores persistent data.

(ontionallv)

Types of architecture

.Monolithic Architecture: The entire application is
built as a single unit, where the presentation,
business logic, and data access layers are all
tightly coupled in one codebase. This is simpler to
develop initially but can be harder to scale and
maintain as it grows.

.Microservices Architecture: The application is

Your experience

.Likely to work either on microservice architecture
In professional setting or

.3 Tier architecture for the applications you build
here e.q:

Ul(html/react), Node.JS, Database(SQL)

Question

What does good software look like?
.To the user?
.To the developers?

.To the designers?

Good Software

.Reusability: Code should be reusable in other
systems.

.Extensibility: Changes in one part of the system
should not affect other parts.

-High Fan-In: Maximise the number of classes
that use utility classes.

.Portability: Design should be transferable to
other nlatforms

Architecture

.System Level: Organising the system into

Su
.C

NSystems or component parts.

ass Level: Dividing subsystems into ¢

.Routine Level: Designing individual met
routines.

aSSesS.

nods and

Core tennets

.Coupling: Refers to the interdependencies
between modules. Low coupling Is desirable for
flexibility and easier maintenance.

.Cohesion: The degree to which elements within
a module belong together. High cohesion means a
module performs a single task or related tasks.

Pointers

.Good design is about balancing trade-offs and
managing complexity.

.Design must evolve over time, adapting to new
iInformation.

.Keeping complexity under control is key to
developing maintainable, efficient systems.

Challenges

.Let’s look at some problematic code and identify
optimisation strategies.

Challenges

// High coupling, Low Cohesion: Fetching and processing data in the same function
function fetchDataAndProcess(url) {
fetch(url)
then(response => response.json())
then(data => {
I/ Process data inside the same function
data.forEach(item => console.log(item.value * 2));

1)

.catch(error => console.error('Error:', error));

Challenges

.Problematic to maintain and reuse properly.
It does two jobs:

- Fetching data from a URL.

- Processing the fetched data by logging it to
the console.

Why It Is bad

. The function does more than one thing, making it
harder to reuse In other contexts.

.For instance, If you need to fetch data without
processing it or want to process data fetched by a
different method, you would have to rewrite the
function or extract its logic.

It Is difficult to test each responsibility separately.
If you want to test data fetching, you'’re forced to

Why It Is bad

Difficult to test: Since fetchDataAndProcess
performs both fetching and processing, it's harder
to isolate and test each part independently.

.Unit testing requires testing both tasks together,
potentially increasing the complexity of the test
cases.

.Harder to maintain: if the fetch or process logic
needs to change, it would be more cumbersome

Why It Is bad

. The function does more than one thing, making it
harder to reuse In other contexts.

.For instance, If you need to fetch data without
processing it or want to process data fetched by a
different method, you would have to rewrite the
function or extract its logic.

It Is difficult to test each responsibility separately.
If you want to test data fetching, you'’re forced to

High Cohesion: Function does one thing - I/l Low Coupling: Independent module for

'ching data processing data

nction fetchData(url) { function processData(data) {

eturn fetch(url) return data.map(item => item.value *
2); Il Process data without external

.then(response => response.json()) dependencies

.catch(error => console.error('Error:’, }

ror));

// one function to rule them all...
function main(url) {
fetchData(url).then(data => {
const result = processData(data);

console.log(result);

D;

1

Example 2

Low Cohesion: Fetching and processing data in
the same function

def fetch_and_process_data(url):
Import requests

response = requests.get(url)
data = response.json()

(fixed) Example 2

High Cohesion: Function does one thin

Mgn function

fetching data orchestrating both
_ def main(url):
def fetch_data(url): data = fotch data(ur)
Import requests result =
process_data(data)
response = requests.get(url) print(resutt)

return response.json()

a) Good (loose coupling, high cohesion)

b) Bad (high coupling, low cohesion)

Coupling

function fetchUserData() {
return { id: 1, name: "John" };

}

function getUserDetails() {

const user = fetchUserData();
/* Directly dependent on fetchUserData
Changes have to be performed to both
In order to refactor
*/

console.log(user.name);

}

getUserDetails();

function fetchUserData() {
return { id: 1, name: "John" };

}

function getUserDetails(fetchFn) {
const user = fetchFn();

/[Inject dependency
console.log(user.name);

}

getUserDetalls(fetchUserData);

Low cohesion vs high cohesion

function fetchAndProcessUserData(userld) {
I/ Fetch user data
const user = { id: userld, name: "John" }

I/l Process user data
console.log(user.name + " (" + user.id +")");

// Unrelated task: Logging extra info
console.log("Logging extra info: Operation
complete.");

}

fetchAndProcessUserData(l);

function fetchUserData(userld) {
return { id: userld, name: "John" };
// Only fetch user data

}

function processUserData(user) {
console.log(user.name + " (" + user.id +")");
I/l Only process user data

}

function logCompletion() {
console.log("Logging extra info: Operation
complete."); // Only log info

}

const user = fetchUserData(l);
processUserData(user);

Lessons

.Hardcoding dependencies Is bad. Parameters
being passed between functions creates better
flow of information. Swap out implementations
does not require new code!

SOLID principles

.Single Responsibility Principle (SRP)

.Definition: A class or function should have only
one reason to change, meaning it should have
only one responsibility.

Why: It promotes high cohesion, making the code
easier to maintain, test, and understand.

.Example: A function should either fetch data or
nrocess data but not do both

SOLID principles
.Open/Closed Principle (OCP)

.Definition: Software entities (classes, modules,

functions) should be open for extension, but
closed for modification.

Why: It allows you to add new features without
modifying existing code, reducing the risk of
Introducing bugs In previously working code.

JExambple: Instead of modifvina a function vou can

SOLID principles

.Liskov Substitution Principle (LSP)

.Definition: Subclasses should be able to replace
their parent classes without affecting the
behaviour of the system.

Why: Ensures that derived classes extend base
classes properly, without altering expected
functionality.

JExambple: If vou have a Bird class and a Penauin

SOLID principles

Interface Segregation Principle (ISP)

.Definition: Clients should not be forced to depend
on interfaces they don't use. Instead of one large
Interface, break it into smaller, more specific
Interfaces.

Why: Promotes high cohesion by ensuring that
clients only need to know about the methods they
use, and reduces the burden of implementing

SOLID principles

.Dependency Inversion Principle (DIP)

.Definition: High-level modules should not depend
on low-level modules. Both should depend on
abstractions (e.g., interfaces or abstract classes).
Also, abstractions should not depend on detalls;
details should depend on abstractions.

Why: This reduces the coupling between high-
level and low-level modules, making the system

SOLID principles

DRY (Don’t repeat yourself)

What is the DRY Principle?

.Definition: The DRY principle states that every
piece of knowledge or logic must have a single,
unambiguous representation in the system.

.Goal: Avoid repetition in code, data, logic, and
documentation to reduce redundancy and make
maintenance easier.

Whvy It Matters:

Why DRY?

Easier Maintenance:

.Changing one instance of a repeated logic block
affects all occurrences, so less chance for bugs.

.Code Readability:

- More concise and understandable code
because there’s no clutter of repeated logic.

- Reduced Complexity:

r\t\ﬁlf\ lff\mf\:lf\f\ f\:mnlt\lﬁ Yy R O\ FN f\f\l"\"‘lﬁﬂl:f\l\

DRY In Practice

.Refactor Repeated Logic:

- ldentify patterns of repeated code and extract
them Into functions, classes, or modules.

. Example: Instead of having validation logic
In multiple places, create a single
validateUser() function.

Use Variables and Constants:
- Avoid using hard-coded values in multiple

/| Before (Repeated logic) /Il After (Refactored)

const areal = 5 * 10; // Rectangle 1 (width * function calculateArea(width, height) {
height) return width * height;

}
constarea2 =7 * 3; // Rectangle 2 (width *
height) const areal = calculateArea(5, 10);

const area2 = calculateArea(7, 3);

// Before (Hardcoded in multiple /I After (Using a constant)

places)
const TAX RATE = 0.20;

const priceWithTax1l = 100 * (1 +
const priceWithTax2 = 200 * 1.2; TAX_RATE);

const priceWithTax1l = 100 * 1.2;

const priceWithTax2 = 200 * (1 +
TAX _RATE);

// Before (Repeated formatting /I After (Refactored)

logic . .
gic) function formatPrice(amount) {

nst pricel ='$' + 100;
const pric $ return '$' + amount;

const price2 ='$' + 200; }

const pricel = formatPrice(100);

const price2 = formatPrice(200);

Good coding practice

.Often requires you to think about solutions to
problems.

-Whiteboarding, flow charts and UML can help
with this process.

.Do not just jJump In and start writing code. Even
simple problems have elegant craft opportunities
for solutions that are easily manageable and less
error prone.

Important lesson

.| might have to work on your codebase one day.

.You might be responsible for writing the code that
powers the self-driving car my children are in.

.l have a vested interest in you getting this right!

	Software Design
	Software Design
	Inherent Challenges
	Tradeoffs
	Emergent Practice
	Emergent Practice
	Design Heuristics
	Summary of a Typical Software Application Architecture
	Types of architecture
	Your experience
	Question
	Good Software
	Architecture
	Core tennets
	Pointers
	Challenges
	Challenges
	Challenges
	Why it is bad
	Why it is bad
	Why it is bad
	Slide Number 22
	Slide Number 23
	Example 2
	(fixed) Example 2
	Slide Number 26
	Coupling
	Low cohesion vs high cohesion
	Lessons
	SOLID principles
	SOLID principles
	SOLID principles
	SOLID principles
	SOLID principles
	SOLID principles
	DRY (Don’t repeat yourself)
	Why DRY?
	DRY in Practice
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Good coding practice
	Important lesson

