
Final Lecture: Advanced Software 
Design and Development



Introduction

• Wrapping up key topics and introducing 
advanced tools for robust software 
development.



Learning Objectives

• 1. Strengthen programming skills.
• 2. Write robust, maintainable, and secure 

code.
• 3. Collaborate effectively using version 

control.
• 4. Test-driven development.



1. Defensive Coding

• Importance of writing code that anticipates 
and handles invalid inputs and errors.



Exception Handling

• Use try-except blocks to gracefully handle 
unforeseen runtime errors.



Static Code Analysis

• Tools like SonarQube and PyLint help detect 
bugs and code smells early.



Static Code Analysis

• Tools like SonarQube and PyLint help detect 
bugs and code smells early.



Design by Contract

• Define preconditions, postconditions, and 
invariants to ensure code correctness.



Preconditions



postconditions
• Define preconditions, postconditions, and 

invariants to ensure code correctness.



invariants



2. Modular Design

• Principles of high cohesion and low coupling 
for scalable systems.



Cohesion

• Modules should be organised around a single, 
well-defined purpose.



Coupling

• Minimise dependencies between modules to 
simplify testing and maintenance.



3. Test-Driven Development (TDD)

• Write tests before implementing functionality 
to ensure requirements are met.



Unit Tests

• Isolate and test small parts of the codebase 
using frameworks like PyTest.



Integration Tests

• Ensure that modules interact correctly using 
tools like Selenium.



Code Coverage

• Measure test coverage with tools like 
Coverage.py.



4. User Testing

• Involve users early and often to identify 
usability issues.



Usability Testing

• Evaluate user interactions to improve interface 
design.



Accessibility Testing

• Ensure the software is usable by people with 
disabilities.



5. Version Control Best Practices

• Use Git effectively for individual and 
collaborative projects.



6. API Design and Interaction

• Use APIs to communicate between systems.



cURL Basics

• Send HTTP requests and handle responses 
from APIs.



Postman and Insomnia

• Test and debug APIs using GUI tools.



Continuous Integration

• Merge code frequently and test changes 
automatically.



Continuous Deployment

• Deploy tested code to production 
automatically.



8. Profiling and Performance

• Identify bottlenecks and optimise code 
performance.



Command-line Tools

• Use `htop`, `perf`, and `ab` to monitor and 
benchmark systems. Chrome extensions also 
support profiling.



Error Handling Strategies

• Graceful degradation, retries, and fallback 
mechanisms.



Error Handling Strategies



Error Handling Strategies



Scalability Awareness
• Consider the impact of module design on 

scalability.



Real-World Practices

• Peer code reviews improve code quality and 
team collaboration.



Code Reviews

• Use GitHub or GitLab to conduct effective 
peer reviews.

• When you write a new bit of code you have to 
explain it to the team.

• One person ‘chairs’ the code review, takes 
notes, actions.

• One or more person assigned to critique, but 
others can also ask questions for clarity.



Documentation

• Document code clearly.
• Unit tests document functionality (or at least 

perceived expectations.)
• Comments are your friend e.g. docstrings.



Documentation



Future-Proofing Code

• Refactor to manage technical debt and 
maintain code quality.



Introduction to DevOps

• Learn about DevOps culture and tools for 
collaboration.



Final Thoughts

• Most people don’t know what they’re doing.
• Criticality of self is vital.
• Empirical testing will get you 80% of the way 

there.
• Some of this stuff is still subjective (e.g. too 

much code coverage for your tests is generally 
not desirable.)



Final Thoughts

Antoine de Saint-Exupéry (Philosopher and 
Writer):

“Perfection is achieved, not when there is 
nothing more to add, but when there is 
nothing left to take away.”



Final Thoughts

Aristotle (Greek Philosopher):

“The whole is greater than the sum of its 
parts.”



Final Thoughts

Confucius (Chinese Philosopher):

“Success depends upon previous preparation, 
and without such preparation, there is sure to 
be failure.”



Final Thoughts

Voltaire (French Philosopher):

“The best is the enemy of the good.”



Final Thoughts
You are just getting started on what could be a 
very exciting journey.



Thank You!

• Coursework deadline is coming up.
• Exams in January.
• I’ll see you all again (soon) for Computing 

Project II...


	Final Lecture: Advanced Software Design and Development
	Introduction
	Learning Objectives
	1. Defensive Coding
	Exception Handling
	Static Code Analysis
	Static Code Analysis
	Design by Contract
	Preconditions
	postconditions
	invariants
	2. Modular Design
	Cohesion
	Coupling
	3. Test-Driven Development (TDD)
	Unit Tests
	Integration Tests
	Code Coverage
	4. User Testing
	Usability Testing
	Accessibility Testing
	5. Version Control Best Practices
	6. API Design and Interaction
	cURL Basics
	Postman and Insomnia
	Continuous Integration
	Continuous Deployment
	8. Profiling and Performance
	Command-line Tools
	Error Handling Strategies
	Error Handling Strategies
	Error Handling Strategies
	Scalability Awareness
	Real-World Practices
	Code Reviews
	Documentation
	Documentation
	Future-Proofing Code
	Introduction to DevOps
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Thank You!

