
Final Lecture: Advanced Software 
Design and Development



Introduction

• Wrapping up key topics and introducing 
advanced tools for robust software 
development.



Learning Objectives

• 1. Strengthen programming skills.
• 2. Write robust, maintainable, and secure 

code.
• 3. Collaborate effectively using version 

control.
• 4. Test-driven development.



1. Defensive Coding

• Importance of writing code that anticipates 
and handles invalid inputs and errors.



Exception Handling

• Use try-except blocks to gracefully handle 
unforeseen runtime errors.



Static Code Analysis

• Tools like SonarQube and PyLint help detect 
bugs and code smells early.



Static Code Analysis

• Tools like SonarQube and PyLint help detect 
bugs and code smells early.



Design by Contract

• Define preconditions, postconditions, and 
invariants to ensure code correctness.



Preconditions



postconditions
• Define preconditions, postconditions, and 

invariants to ensure code correctness.



invariants



2. Modular Design

• Principles of high cohesion and low coupling 
for scalable systems.



Cohesion

• Modules should be organised around a single, 
well-defined purpose.



Coupling

• Minimise dependencies between modules to 
simplify testing and maintenance.



3. Test-Driven Development (TDD)

• Write tests before implementing functionality 
to ensure requirements are met.



Unit Tests

• Isolate and test small parts of the codebase 
using frameworks like PyTest.



Integration Tests

• Ensure that modules interact correctly using 
tools like Selenium.



Code Coverage

• Measure test coverage with tools like 
Coverage.py.



4. User Testing

• Involve users early and often to identify 
usability issues.



Usability Testing

• Evaluate user interactions to improve interface 
design.



Accessibility Testing

• Ensure the software is usable by people with 
disabilities.



5. Version Control Best Practices

• Use Git effectively for individual and 
collaborative projects.



6. API Design and Interaction

• Use APIs to communicate between systems.



cURL Basics

• Send HTTP requests and handle responses 
from APIs.



Postman and Insomnia

• Test and debug APIs using GUI tools.



Continuous Integration

• Merge code frequently and test changes 
automatically.



Continuous Deployment

• Deploy tested code to production 
automatically.



8. Profiling and Performance

• Identify bottlenecks and optimise code 
performance.



Command-line Tools

• Use `htop`, `perf`, and `ab` to monitor and 
benchmark systems. Chrome extensions also 
support profiling.



Error Handling Strategies

• Graceful degradation, retries, and fallback 
mechanisms.



Error Handling Strategies



Error Handling Strategies



Scalability Awareness
• Consider the impact of module design on 

scalability.



Real-World Practices

• Peer code reviews improve code quality and 
team collaboration.



Code Reviews

• Use GitHub or GitLab to conduct effective 
peer reviews.

• When you write a new bit of code you have to 
explain it to the team.

• One person ‘chairs’ the code review, takes 
notes, actions.

• One or more person assigned to critique, but 
others can also ask questions for clarity.



Documentation

• Document code clearly.
• Unit tests document functionality (or at least 

perceived expectations.)
• Comments are your friend e.g. docstrings.



Documentation



Future-Proofing Code

• Refactor to manage technical debt and 
maintain code quality.



Introduction to DevOps

• Learn about DevOps culture and tools for 
collaboration.



Final Thoughts

• Most people don’t know what they’re doing.
• Criticality of self is vital.
• Empirical testing will get you 80% of the way 

there.
• Some of this stuff is still subjective (e.g. too 

much code coverage for your tests is generally 
not desirable.)



Final Thoughts

Antoine de Saint-Exupéry (Philosopher and 
Writer):

“Perfection is achieved, not when there is 
nothing more to add, but when there is 
nothing left to take away.”



Final Thoughts

Aristotle (Greek Philosopher):

“The whole is greater than the sum of its 
parts.”



Final Thoughts

Confucius (Chinese Philosopher):

“Success depends upon previous preparation, 
and without such preparation, there is sure to 
be failure.”



Final Thoughts

Voltaire (French Philosopher):

“The best is the enemy of the good.”



Final Thoughts
You are just getting started on what could be a 
very exciting journey.



Thank You!

• Coursework deadline is coming up.
• Exams in January.
• I’ll see you all again (soon) for Computing 

Project II...
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