Final Lecture: Advanced Software
Design and Development

Introduction

* Wrapping up key topics and introducing
advanced tools for robust software
development.

Learning Objectives

1. Strengthen programming skills.

2. Write robust, maintainable, and secure
code.

3. Collaborate effectively using version
control.

4. Test-driven development.

1. Defensive Coding

* Importance of writing code that anticipates
and handles invalid inputs and errors.

Exception Handling

* Use try-except blocks to gracefully handle
unforeseen runtime errors.

except:

®

> try to hit the ball

©

If didn't hit,
then you will get
bowled.

i

else: :

finally:
1

>

!

else it willgoin the
hands of wicket
keeper.

Irrespective of
prior cases, the
ball will be thrown.

Static Code Analysis

* Tools like SonarQube and PyLint help detect
bugs and code smells early.

A non-exhaustive list of open source linters €
collected in May 2021.
W promyze
Increase developers' skills
through best practices
definition and sharing

More resources can be found at:
https://awesomeopensource.com/projects/linter

Open Source Linters
Landscapein 2021 o

Any comment or remark ? contact@promyze.com hitps://promyze.com

Ansible CSS F# Java Markdown R SQL
ansible-lint stylelint fantomas checkstyle markdownlint lintr sqlint
C++ csslint FSharpLint error-prone textlint styler sqlfluff
_ csscomb.js Go pmd Ocaml Ruby Swift
vera++ doiuse golangci-lint spotbugs fHiassot rubocop swiftlint
FREC brakeman
cppcheck D HOieROCE JS PHP Terraform
: revive PHP-CS-FlIxer reek _
cpplint D-scanner boi TFlint
go-critic flow phpstan sorpe
) tfsec
C# Dart ineffassign prettier phpcpd Rust e
standard PHP_CodeSniffer -
gendarme dart_style Groovy . - < rust-clippy terragrunt
dotnet-format linter CodeNarc eslint an rust-analyzer 8
X0 psalm Typescript
code-craker Docker ‘ Scss
Haml rslint phplint typescript-eslint
Roslynator : _ scsslint
Chef hadolint haml-lint hegel Puppet Soal gts
e - = . cala
dockerfilelint Haskell Julia puppet-lint t codelyzer
. s scapegoa
SOOKBIIE Elixir hiint Lintl Python Scafasgtyle Yaml
CI.O]ure credo britanny Kotlin pycodfestyle e yamllint
eastwood dogma HTML kilint pylln‘t Shell spectral
joker HTMLHint detekt Raeit Multi-lang
o Erlang flakes shellcheck .
kibit S tidy-html5 K8S o hshats sonarciu e
clj-kondo bootlint kube-lint pyre-check solidity super—lilntter
validator kibeval pyright o megalinter

Design by Contract

* Define preconditions, postconditions, and
invariants to ensure code correctness.

Preconditions

def divide(a, b):

Preconditions:
- b must not be zero (division by zero 1s undefined).

it b == 0:
raise ValueError("Denominator must not be zero.")

postconditions

* Define preconditions, postconditions, and
invariants to ensure code correctness.

def find max(numbers):
Preconditions:
- numbers must be a non-empty list or iterable.

Postconditions:
- The result must be greater than or equal to
every element in the input list.
if not numbers:
raise ValueError("Input list must not be empty.")

result = max(numbers)
Postcondition check
assert all(result >= num for num in numbers), "result is not the maximum."
return result

class BankAccount:

Invariants:

- The balance must never be negative.

def init (self, balance):
if balance < 0:
| raise ValueError("Initial balance cannot be negative.")
self.balance = balance

def deposit(self, amount):

if amount < 0:

| raise ValueError("Deposit amount must be non-negative.")
self.balance += amount

assert self.balance >= 0, "Invariant violated: balance is negative."

def withdraw(self, amount):

if amount < 0:

| raise ValueError("Withdrawal amount must be non-negative.")
if amount > self.balance:

| raise ValueError("Insufficient funds.")

self.balance -= amount

==t =mTF ka1l mmec,a e M HNTrmyvr=rm 1 =smtE wv1mal asFards Bl =smes 16 BReacdm=atEd1v00a U

2. Modular Design

* Principles of high cohesion and low coupling
for scalable systems.

Cohesion

* Modules should be organised around a single,
well-defined purpose.

|1|.||'|||'|
1 |'II IREA L]
I H“!

Coupling

* Minimise dependencies between modules to
simplify testing and maintenance.

Types of Modules Coupling

There are various types of module Coupling are as follows:

No Direct Coupling m
p--------------- Data Coupling ?

° External Coupling I
" mmmmmen B Content Coupling m

3. Test-Driven Development (TDD)

* Write tests before implementing functionality
to ensure requirements are met.

Write a
failing test

Make the
test pass

Unit Tests

* |solate and test small parts of the codebase
using frameworks like PyTest.

[TestFixture]
public class AccountTests

{
[Test]

public void Deposit PositiveAmount BalancelsUpdated()
{
var account = new Account(1@);

account.Deposit(100);

Assert.AreEqual(110, account.Balance);

Integration Tests

* Ensure that modules interact correctly using
tools like Selenium.

focus of the unit tests

A
r \

method calls method calls

. <<ls@s>>" component A v
test driver ===~ - “tg o’ ——— ComponentB

return values return values

\ J
Y

Focus of the integration tests

Code Coverage

* Measure test coverage with tools like
Coverage.py.

Test Coverage Metrix

Test Result Details

<

Executed Test

Test 1
Test 2
Test 3

Requirement Coverage

® Failed Test

4. User Testing

* |nvolve users early and often to identify
usability issues.

Create
a test plan

Facilitate
the test

Analyze Create
case data testreport

a. Scope of work a. Observe users a. Assess user behavior a. Review video footage

b. Recruit users b. Identify issues b. Analyse user click path b. Identify design isssues

c. ldentify objectives c. ldentify solutions c. ldentify problem areas c. ldentify best practices

A Ectaklich mmotrirc A Intarviow 11carce A Accnce Rnaviaaticsm A Deocinm recarmmondati;one

Usability Testing
* Evaluate user interactions to improve interface
design.

Usability Testing Methods

AT AT

Formal, live testing of Catching users in their
representative users own environments can
requires an empathetic reveal more-accurate
moderator to note testers'’ “field” insights.
experiences.

\ y \ y

Testing your design

informally on

passers-by/colleagues;
risks include inaccurate

Accessibility Testing

* Ensure the software is usable by people with
disabilities.

(Testing for visual a11y errors)

alt text

imesty @ Mangools (Testing for non-visual (code) a1y errors)

5. Version Control Best Practices

e Use Git effectively for individual and
collaborative projects.

| How Git Actually Works

git fetch

6. APl Design and Interaction

* Use APIs to communicate between systems.
Top 6 Most Popular API Architecture Styles) ByteByteGo.com

Style I1lustration Use Cases
SOAP C— Ca— XML-based
E— LEML = for enterprise applications
— -
RESTful Resource —b-:: fROErSDerrbCES ebraVSeE:l s
e
GraphoL I —— = Query language
— S= g reduce network load
. 5 =) High performance
BRFL o T g = | for microservices
Ca— Bi-directional
WebSocket ' push =— | for low-latency data exchange
A Asynchronous
Webhook -.___ - for event-driven aonlication

cURL Basics

 Send HTTP requests and handle responses
from APIs.

> curl https://example.com/
<!doctype html>
<html>
<head>
<title>Example Domain</title>

<meta charset="utf-8" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style type="text/css">

body {
background-color: #f0f0f2;
margin: 0;
padding: 0;
font-family: -apple-system, system-ui, BlinkMacSystemFont, "Segoe UI", "O
elvetica Neue", Helvetica, Arial, sans-serif;

¥
div {
width: 600px;

Postman and Insomnia

* Test and debug APIs using GUI tools.

POST v http://example.com/fhir/Patient
Params Authorization e Headers (10) Body e Pre-request Script
none form-data x-www-form-urlencoded @ raw binary
1k
2 "resourceType": "Patient”,
3 "identifiexr": [
4 i
= "system": "http://example.com/patient-identifiexr",
G "value": "123456789"
7
g 1
9 "system": "http://example.com/national-identifiexr",
16 "value": "NAT-123"
11 3
17 1

Continuous Integration

 Merge code frequently and test changes
automatically.

Continuous Deployment

* Deploy tested code to production
automatically.

8. Profiling and Performance

* |dentify bottlenecks and optimise code

performance.

sean@sean: ~

ik [o Elements Console Sources A Network Performance Memory >
® @ Y Q ([Oerreservelog [Disablecache Slow 4G v = 24
(? Filter) O Invert Mare Filters v
All Fetch/XHR || Doc || €55 | JS || Font | Img || Media | Manifest @ W5 || Wasm || Other
| 200 ms 400 ms. 600 ms 800 m= 1000 m= 1200 ms 1400 ms 1600 ms 1B00 ms 2000 ms
r\' 3] Elements Console sources A Metwork A Performance Lighthouse 2> @ 11 4 83 H g3 E:B : |
+ 15:50:45 - www.gold.acuk ¥ @
'9' https:/Awww.gold.ac.ukicomputing/people/megrath-sean/ E . .
- MName Status Type Initiater Size
sprite.svg svg+xml shyles. 2117695....cs5
5 9 96 75 100 [collect?en=page_view&dr=www.google.com&... 302 ping/Redir... gtm.js?id=GTM-54HRKX:1i
js?id=G-375J4LLPD0O&|=datalayer&cx=c>m=... scripk bm.jsfid=GTM-54HRKX: 11
analytics js scripk
Performance Accessibility Best SEO G e o
Practices destination?id=AW-8303394408&(=datalayer&... scripk
€ foevents.js (blocked:ot... script
Q uwtjs (blocked:ot... | script
¢ sdkjs?sdkid=BSG11MIHOSCA4ANQTADUG scripk VM108:1
Sh547yvB98 scripk VM108:1
- events.js scripk VM110:1
B sw_iframe.html?origin=https%3A%2F%2Fww. .. document
collect?v=1&_v=j1018a=335689851&t=pagevi... 200 gif
insight.old.min.js scripk

@4 A 97 Ho7

8 x

&
2200 ms 2400 ms
Time

2ms

238 570 ms

4ms

2ms

3Ims

4ms

0B 41 ms
0B
0B
0B
0B

Ims

588 569 ms

Sms

Command-line Tools

 Use htop, perf, and ab to monitor and
benchmark systems. Chrome extensions also

support profiling.

B < 4120ms 4140ms 4160ms, . 4180ms 4200ms 4220ms 4240ms 4260ms 4280ms 4300ms 4320ms 4340ms 4360 ms.
resizeDocument resi...ent resizeDocument r..t resi.ize _.e
X....n) resize X... Scr...esh (ar
! ¥ .55 resize - x.f...on) Sc
Mame resizeDocument) setMultipleChoiceDimensions [...) He..ess x|
Self time 6.3 ms e setMultipleChoiceDimensions K., (an...n) | %
Total time 113.5 ms ekt x.fn.aeach X... (am...n) (&
URL default js:24 .55 x.extend.each :
Agagregated self time 8.989 ms e s U T . e
i x.fn.{anonymous function) (a

Aggregated total time 172.839 ms xektend.aocess

(amonymous Function)

Console | Search Emulation Rendering

& W <topframe= ¥ || Preserve log

@ GET http://localhost:88008/bundles/quickyformadmin/css/fonts/typeform glyphs.woff 484 (File not found) General hirime

@ GET http://localhost:8800/bundles/quickyformadmin/css/fonts/typeform glyphs.ttf General hirime

© »GET http:/ localhost:8608/bundles/quickyformapp/is/lib/webfontloader.is 484 (File not found) General%28hiring%:
resize

© »GET http://localhost:8808/app/form/field/uploadCredentials/ /37408182 uploadStrategy=xhr 404 (File not found)

>

Error Handling Strategies

* Graceful degradation, retries, and fallback
mechanisms.

Error Handling Strategies

Attempt 1 to fetch data...
Error: 404 Client Error: Not Found for url: https://gold.ac

.UK/API/

Retrying in 2 seconds...
Attempt 2 to fetch data.

Error: 404 Client Error: Not Found for url: https://gold.ac

.UK/API/

Retrying in 2 seconds...
Attempt 3 to fetch data...
Error: 404 Client Error: Not Found for url: https://gold.ac

.UK/API/

Retrying in 2 seconds...

All attempts failed. Using fallback data.
{'message': 'Fallback data: API is unavailable.'}

Other options? Load cookies? Session objects? Guesstimates?

Error Handling Strategies

import requests
import time

def fetch data(url):

Fetch data from the given URL with retries and fallback.
retries = 3
delay = 2 # seconds

for attempt in range(retries):
try:
print(f"Attempt {attempt + 1} to fetch data from {url}...")
response = requests.get(url, timeout=5)
response.raise for status() # Ralse error for bad responses (4xx or 5xx)
return response.json() # Return data if successful
except requests.RequestException as e:
print(f"Error: {e}. Retrying in {delay} seconds...")
time.sleep(delay)

Fallback mechanism
print("All attempts failed. Using fallback data.")
return {"message": "Fallback data: API is unavailable."}

Scalability Awareness

e Consider the impact of module design on
scalability.

b) Bad (high coupling, low cohesion)

Real-World Practices

Peer code reviews improve code quality and
team collaboration.

[] Readability and Maintainability [] Error Handling and Exception Handling
[]Is the code easy to read and understand? [L] Are errors properly handled and logged?
[] Are variable and function names descriptive? [[] Are exceptions used effectively to handle errors?
[] Are comments clear and helpful?
[] Testing
[[] Are there sufficient unit tests covering functionality?

[]!s the code properly formatted and indented?
[1Do the tests provide good code coverage?

[] Functionality
[[] Does the code meet the requirements? [J Do the tests pass and provide expected results?
[] Are all edge cases considered and handled?
[] Are error conditions properly handled and reported? L security
[] Are sensitive data properly handled and protected?

[] Code Structure and Organization []1s the code secure against common vulnerabilities

[iIs the code modular and follows best practices?
[] Are there any duplicated or unnecessary code? L] Documentation
[] Are functions and classes appropriately structured? [ls the code adequately documented?
[] Are there any missing or outdated comments?
[] Performance
Code Review Checklist Template

[] Are there any potential performance bottlenecks?
Create beautiful Code Snippets with Ease

] Are loops and iterations optimized?
snappify.com

] Are proper data structures and algorithms used?

Code Reviews

Use GitHub or GitLab to conduct effective
peer reviews.

When you write a new bit of code you have to
explain it to the team.

One person ‘chairs’ the code review, takes
notes, actions.

One or more person assigned to critique, but
others can also ask questions for clarity.

Documentation

* Document code clearly.

e Unit tests document functionality (or at least
perceived expectations.)

e Comments are your friend e.g. docstrings.

SOWE PROBLEMS + CREATE PROBLEFS

—— - o *—
TOOS THAT ToolS THAT TOOLS THAT NEED TOOLS WHOSE MANUAL
DONT NEED NEED A A MANUVAL BUT STARTS WITH “HOW TO
A MANUAL MANUAL DONT HAVE ONE READ THIS MANVAL

Documentation

NE/ER HAVE T FELT so | WHO WERE YOO,
CLOSE To ANOTHER SoUL. | DENVER(ODERT?

|
PND YET SO HELPIESSLY ALONE. | L7 D1IP hw SEE
AG WHEN T GOOGLE AN ERROR F\
AND HERES ONE RESULT

A THRERD BY SOMEONE
WITH THE SAME PROBLEN

AND NO ANSWER
LAST RSTED O N 2003 |

Future-Proofing Code

* Refactor to manage technical debt and
maintain code quality.

Better Reduced
Readability Technical Debt
4
Reduced Enhanced
Complexity Performance
CODE
REFACTORING
Improved Effortless
Maintainability Extensibility

Introduction to DevOps

Learn about DevOps culture and tools for

collaboration.
@ PivotalTracker & TeamCity %m (W HashiCorp .,-:_:-:‘5" 1azon 6

.n o asana
<" Lucidchart
amic DOX o . @) @ Jenkins r) M
Travis Cl
L e . iy - 2. 8m Scmc ol -
¥L) RELEASE

Flowdock p
Wrike
< split Somor ™

/ Ij OHICE Googhe Docs
S ®gliﬁg puppet cuer
Basecam '
@ P g L () rackspace
mm Dropbax _:3'
= N OpsGenie *
ﬂi; Microsoft Tearms g
(x) matt . _E __ pagerduty
i= zoominfo. 2 BlueJeans 4t slack
% O NewRelic. {ff snyk
Nagios’

A CODE CLIMATE
splunk> L@®GGLY

<>glt A 4
GitLab
@ "
T RAYGUN % U

= npm
lFrug e @ SAUCELABS el ITEED
— SFitN W 3 i
3 'J e B runnable Y &\ SENTRY F ;5 i
nede zendesk @Jasmine ;! Mg
kubernetes dockrzr GitHub wrercom EHENEL ICRM ® DATADDG
ZZPHYR cucumber rlRollbar APPDYNAMICS
Voal St B Sonatype @ (® Browserstack bug (s o .
Server = # : . « | adurscellear
B @freshdesk oMETRY' (G QASymphony %% OMNIDES gico

Final Thoughts

Most people don’t know what they’re doing.
Criticality of self is vital.

Empirical testing will get you 80% of the way
there.

Some of this stuff is still subjective (e.g. too
much code coverage for your tests is generally
not desirable.)

Final Thoughts

Antoine de Saint-Exupéry (Philosopher and
Writer):

“Perfection is achieved, not when there is
nothing more to add, but when there is
nothing left to take away.”

Final Thoughts

Aristotle (Greek Philosopher):

“The whole is greater than the sum of its
parts.”

aEm

-0
I’T‘j Q o
| y

VERSION tmam

CONTROL

Final Thoughts

Confucius (Chinese Philosopher):

“Success depends upon previous preparation,
and without such preparation, there is sure to
be failure.”

Sprint Planning

To Do Doing Done

Final Thoughts

Voltaire (French Philosopher):

“The best is the enemy of the good.”

Learning L
earning Latest
Algorithms and Techngl ogies
Data Structures
COUNTIR)
s |
Q ‘D \‘:‘1 S

Bl

Final Thoughts

You are just getting started on what could be a
very exciting journey.

| Z<w

Department of Computing

Degree Programmes

The Department of Computing offers single and joint honours undergraduate degree programmes, as well as MPhil =
and PhD research degrees. Computing students at Goldsmiths come from many different countries, age groups and ! ; _—
backgrounds. There are currently around 400 undergraduate and 12 postgraduate students in the department. r . ' - 1 i} ; - ' \ | =

| ¥ = N
Undergraduate Degrees

» BA Computing and Design for the World Wide Web

BSc Computer Science

BSc Information Systems

BSc Internet Computing

Postgraduate Degrees

Thank You!

* Coursework deadline is coming up.
* Exams in January.

* |’ll see you all again (soon) for Computing
Project Il...

	Final Lecture: Advanced Software Design and Development
	Introduction
	Learning Objectives
	1. Defensive Coding
	Exception Handling
	Static Code Analysis
	Static Code Analysis
	Design by Contract
	Preconditions
	postconditions
	invariants
	2. Modular Design
	Cohesion
	Coupling
	3. Test-Driven Development (TDD)
	Unit Tests
	Integration Tests
	Code Coverage
	4. User Testing
	Usability Testing
	Accessibility Testing
	5. Version Control Best Practices
	6. API Design and Interaction
	cURL Basics
	Postman and Insomnia
	Continuous Integration
	Continuous Deployment
	8. Profiling and Performance
	Command-line Tools
	Error Handling Strategies
	Error Handling Strategies
	Error Handling Strategies
	Scalability Awareness
	Real-World Practices
	Code Reviews
	Documentation
	Documentation
	Future-Proofing Code
	Introduction to DevOps
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Final Thoughts
	Thank You!

